—s. Carnegie-Melion University

— Software Engineering Institute
-
N
v \ ©
N
N
<
N \ SEI Serpent Application
2 Developer’s Guide
\ January 1989

Ny - A
| DTIC

| ELECTE

a:

e
-
’ N N
AN

N .
- DISTNHBUTION STATERS ()(\ \
r-u- , g0 o N\ o

.- .

User’s Guide

CMU/SEI-89-UG-6
ESD-89-TR-12
January 1989

SEIl Serpent Application
Developer’s Guide

User Interface Prototyping Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie M.:on University
Pittsburgh, Pen~~.!vania 15213

This user’s guide was prepared for the

SEl Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this guide should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange. '

Review and Approval

This guide has been reviewed and is approved for publication.

FOR THE COMMANDER

N .
Karl Shingler
SE! Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other US Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145,

Copies of this document are aiso available through the National Technical information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

_

Table of Contents

O©OOWO NNOPLPWW =

4. Ada Language Application

4.1. How to Develop 1

4.1.1. Task 1: Defining the S

4.1.2. Task 2: Adding inform

4.1.3. Task 3: Retrieving Inform

4.2. Recording Shared Database

4.2.1. Checking Status

4.3. Serpent Ada Language Intert

4.3.1. Types and Constants
4.3.2. Routines

5. Application and Dialogue Testing
5.1. Playback/Record
5.1.1. Testing the Application
5.1.2. Testing the Dialogue
5.1.3. Commands

Appendix A. Glossary of Terms

hared Database. 52
‘the Shared Database

CMU/SEI-89-UG-6 I

H CMU/SEI-89-UG-6

Figure 4-6:
Figure 5-1:
Figure 5-2: Testing the

Accession Por

NTIS GRA&I "
DTIC TAB
Unanneunced

Justifigation_ ‘

DDQ
\

By

Distglpuglpn/
Availability Codes
Avaii-aﬁaiai
- |Dist Speaial

o]

;" Serpent Architecture
: Shared Database
: S '. ata Instantiation

rmation to the shared database
rieve data synchronously 56

58

18 for examining the status 59
he Application 93
" o4

pTiC

cery
INSPECTIR

CMU/SEI89-UG-6

SEIl Serp;nt Application Developer’s Guide

ace Management System (UIMS).that supports the development and
software system. Serpent supports incremental devei-

0 assumes that you are experienced with using

.a general description of
using Serpent. It aiso

velopment.
» C Language Applicatfon sections in this part address

the needs of C language appiic

scribes how to develop an application u
language. The second section contair
constants, types, and routines availab
tion developer.

« Application and Dialogue Testing The two sections in s.,part of this gulde;._
describe an approach for testing the application and dialogue portions of a soft-
ware system developed using Serpent, independent of the implementation lan-
guage selected. The first section describes the task steps involved in testing
while the second section describes commands available to the application or
dialogue tester.

The glossary provides definitions and explanations of terms that are used mls éuide.

CMU/SEI-89-UG-6 . 1

Referenees :

e Guide to

2 CMU/SEI-89-UG-6

2. Overwew

lllll

I/O indo

R Hlitl‘th‘lHlllIH!‘HUHH(IHUlHWIlu

L

Figure 2-1: Serp

|

l
l| |

.

1

[

'1 i

The presentatlon iayer conslsts of various mput/output technologies which have been incor-

eralized interaction with the end-user. Serpent is being distributed
‘Window System, version 11. Other input/output technologies can

BB levels of the architecture is the level of functionality provided
tation layer is responsible for lexical functionality, the dialogue
plication layer for semantic functionality. in terms
yer has responsibility for determining which menu

selected. The di
presented and pra
cation layer

The end-user
logue is executed by the dialo
face for a software system.
mation and end-user intey -+~ The Serpent dialogue speclﬁcation language (SLANG)

ystem in a presentation inde-
ogramming languages. The

cation in a delivered system. The actior
of the specific problem domain.

n layer are based on knowledge

2.2. Shared Database

system. In an active database, muitiple processes
Changes to the database are then propagated
database model is implemented in Serpent by har : ‘

tween the application and /O technologies. The apphcatlon can ada modify, query -or
remove data from the shared database. Information provided to Serpent by the appﬁeﬁon:
is avallable for presentation to the end-user. The application has no knowledge of the pres--
entation media or user interface styles used to present this information.

Information in the shared database may be updated by either the apphcztion
ogies. Figure 2-2 illustrates the use of the shared database in Serpent.

Serpent allows the specification of dependencies between elements: in the shared database
in the dialogue. These dependencies define a mapping between appﬂcaﬁon data, presen-
tation objects and end-user input. The dialogue manager enforces these dependencies by

4 CMU/SE!-89-UG-6

Application

$

Dialogue
specified
dependencies

Serpent Shared Database

"igure 2-2: Shared Database

stored in the shared databasa until the dependencies are met.
Changes are then pmpagated to ei .the I/O technologies as appro-
priate. See the, SLANG Referance ion.

tained in the shared database is de-
corresponds to the database concept of
ar each application.

The type and structure o
fined externally in a shared data defir
schemas. A shared data definition file

A shared data definition file consists of
data structures become shared data gk

data structures become components that
Serpent does not allow nesting of records.

It is possible to define multiple instances of & s :
elements are instantiated by specifying the el nt name. Each shared data instance is
identified by a unique /D. |Ds must be maintained by the appllcationto identity shafed data
instances when multiple instances of a single shared data element exist. Figure. 3 pro-
vides an illustration of shared data instantiation.

Serpent supports both a synchronous and asynchronous system model. This.i is: necessary
since an application often needs to satisfy real-time constraints and cannot__neeassanly af-
ford to wait for end-user input. This introduces a situation where multiple processes, which

are using the shared database, may access or modify the database concurrently. This con- B

current access of the shared database may result in a situation: vmere the integrity of the
database is corrupted.

CMU/SEI-89-UG-6 . 5

Shared data record Instantiation Shared data instances

" \ 4 \ 4
employee: record John_Smith
| name: string[50]; > 101 Main Street
address: string{50]; (212) 555-1234
phone: string[10]; Sus Scott
end record; 22 Park Avenue
Undefined
Harry Altair
64 5th Avenue
(212) 712-6873

causes the updates to be made
termination of the transaction.

"Rhg back a transaction causes
but not yet either committed or

There are three major tasks which need to
Serpent:

1. Define Jhared data.
2. Add information to shared data.
"3. Retrieve information from shared data.

To perform each of the preceding tasks, there are several steps you need to complete. The
first task is completely independently of the language in which the application was dewel-
oped. The last two tasks are also both language independent, but how you spect{y them
depends on the programming language you chose for application development. Currenﬂy :
Serpent supports two different language interfaces, C and Ada. Therefore, the two parts
that follow specify and illustrate how to develop an application in the C and Ada program-

ming languages, respectively. : '

6 CMU/SEI-89-UG-6

2.4. Application and User Interface Testing

The record/playback feature of Serpent allows you to record transactions between the appli-
- cation and dialogue manager, or between the dialogue manager and the various technol-
ogies. These transactions may then be played back at a later time. This is useful in per-
forming regression and/or stress testing of the application, dialogue or technologies.

tasks that need to be performed when using the record/playback fea-
ting the applicaﬁon or user interface:

Reeerdm shared database transactions.
‘2. Testing the appﬁcaﬁon or user mten‘ace

To perform each: of the preceding tasks, there are several steps you need to complete. The
specification of steps inthe first task Is dependent on the programming language selected
for application’ ﬂevelopfmnt. Therefore, .a description of the steps involved in recording
shared database transactions is mcluded ‘both the C language and Ada language appii-
cation development parts of this guic

The execution of the sgepsz-irr:.the seoond task are performed independently of the language
in which the application was developed. These tasks are described in the Application and
Dialogue part of thns-g_} je. :

2.5. Sensor Site Status Example |

The sensor site status (SSS) apphcaﬁ
Serpent. Figure 2-4 is an illustration
user interface for the application.

is an: example of an application developed using
"spider chart” display wh:ch is one possible end-

The sensor site status application is adapted from a comrnand and control application. The
purpose of the application is to monitor and display the: status of various sensor sites and
their associatec communications lines to: the two coneiatimﬁcenters

The columns of rectangular boxes on the nght and !elt s:des of the splder chan display (for
example, GS1, GS2) represent sensor sites. The circles in the middle of the di isplay repre-
sent the correlation centers that collect information from the sensors. Each sensor site com-
municates with both correlation centers; this is represented by the duplication of sensor site
boxes on both the right and left sides of the display. The lines present the communicaﬁon
lines between the sensor sites and the correlation centers.

An operator may display detailed information conceming a sensor site by sefecting a Sensor‘ -
site box corresponding to that sensor. This causes a detailed window to appear displaying:
information conceming the status of the sensor, the date and time of the iast message, the
reason for outage (RFO) and the estimate time to retured operation (ETRO). These fields
may be modified by the operator. Sensors may have one of three status: green, yeliow and

CMU/SEI-88-UG-6 7

red. For sensor which are not fully operational (i.e. status is green) the ETRO is displayed
to the outside of the sensor site box. ETROSs are also displayed over communication lines
that ase nat fully operational.

‘ iafécy_enoe to the sensor site status application implies a reference

I as1 [ie/12452})

oaa
-
»

-+
L]

[14/13302] wRB |t4/13302 WRB j14/1330Z

18/1830 CAV

8 CMU/SEI-88-UG-6

N

3.C La:ng‘ﬁage Applicatioh,Development

«How to Devéinp_an_ Appilication in C: A step by step specification of the tasks
reloping a Serpent application in the C programming language.

age Interface Reference: A detailed description of the types,
ftines available for developing Serpent applications in the C

The following is a brief d'_f
User’s Guide contains a It

Step' 1: Create the shared data de
type and structure of application info
database. The shared data definition is

Figure 3-1 is a example of a shared data dsfinition file r the sensor site status application.
% the implementation language
used. '

The file shown in Figure 3-1 contains definitions for the data shared between the application
and the dialogue for the sensor site status apphcation The three records define the type
and structure of the sensor, correlation center, and communication line apphcatton ahects
Note that these records only contain information to define the actual objects; they d

specify how the information is presented to the end user.

Step 2: Run the created file through the SADDLE processor. Once the sharod data has

been defined, you can run the file through the SADDLE processor to gonerate aC languaget T

header file. You then include this header file with your C application in order to declare local

variables of the shared data types. This allows you to directly manipulate shared data struc-
tures in C. The C header file generated by running the shared data definition file shown in
Figure 3-1 through the SADDLE processor is illustrated in Figure 3-2.

CMU/SEN-89-UG-6 9

sensor_site_status:shared data

etTo: tt:inq[BJ,
status:integer:
end recoxd;

end shared data

#define MAIL BOX "s"
#define ILL | FILE "8

typd.! struct {

char site_abbx([4]

int status;

char site[51):

char last_message(9]:

char zfo[51}:

char etro[9]:

} sensor;

typedef struct (
char nama[4]:
int status:
} correlation_center;

typedef struct ({

id_type from_sensor:; /*ID of sensor */ L
id type to_ce; /*ID of correlation contn:]*/ P
char etro[9]: S
int status;

} commanication line;

Figure 3-2: C language header file

10

CMU/SEI-89-UG-6

In Figure 3~z tﬁé first two lines in the file define two well-known constants: MAIL BOX and
ILL_FILE. These constants are used in task 2 to initialize Serpent. The three typedafs
emaspond 1o the records defined within the shared data definition file.

1.2. Task 2: Adding Information to the Shared Database.

,_BOX, ILL_FILE):

strepy (oft .name,
oft_status =

"OFT") ;.

transaction

cemc_id = add_shared d
tzansaction,
"correlation_center"
NULL,
&cme

):

oft_id = add_shared data(
transaction,
"correlation_ centex",
WULL,
&oft

):

commit_ transaction (transaction);

serpeant_cleanup():
return; :

Figure 3-3: Basic calls for adding information to the shanad database

CMU/SEI-89-UG-6 11

Preliminary Task Steps
In preparatioh”for?tha*task of adding information, you need to complete two preliminary

variable maintains the handie
cme and oft, both of which
local instances of the data

;htion_ccnt.:. These variables store
shared across the interface with the Serpent

generated by the SADD

The two variables that
stances created in shared data:
mation, since it is the only wi
mation when multiple instances

Main Task Steps
The main task of adding information to th
steps: - .
1. Initialize Serpent.
2. Start a transaction.
3. Add shared data to the interface.
4. Commit the transaction.
5. Clean up.

Step 1: Initialize Serpent. Once the appropriate variables have been declared it is posslble

to begin describing the logic. The first step is to initialize the Serpent system using ths
serpent_init call and passing the MATL BOX and ILL FILE constants generated bytho,-,z 3

SADDLE processor during step 2 of task 1.

Step 2: Start a transaction. Before information can be added to the shared database itis
necessary to start a transaction. All additions or modifications to the shanad database must
be performed as part of a transaction.

12 CMU/SEI-89-UG-6

Step 3: Add Information to the shared database. Once a transaction has been started,
you can:hog 'to add mformatnon to the shared database as part of this transaction.

Stap COmmlfim:’zlransactlon. The actual change to shared data does not occur until
ymmitted. Up to this point it is also possible to roll back the transaction
es to shared data occur.

) serpent_cleanup routine must be invoked befors exiting the
rtant that you complete this step, to release all allocated system

nation from the Shared Database

red database it may be presented to the end-user
ogies. The end-user may in tum make modifica-
3nt back to the application to be updated in the

using one
tions to.th

The Serpent interface

both synchronous and asynchronous calls for getting infor-
mation back from the st

tabase. The following code segment from the sensor site
-4 illustrates the basic. calls:required to synchronously retrieve

transaction = get_ tran

id = get_first_ changed
while (id != null id)

purge_transaction(transaction):

Figure 3-4: Basic calls required to retrieve data synchronously e

"CMU/SEI89-UG-6 13

|

Task Steps
The task d‘retﬁevtn } tnformatlon from the shared database involves three distinct coding

et a transaction.

et transaction routine waits until a transaction is
bf this transaction. To poll for a new transaction
‘ ,t transaction no_wait routine, which will

items to incorporate chir
this example, it is assurmed:
shared data element id. ‘The pu
changes into this local databasé ¢
updated is retrieved from the ha:
ing id as an indsx into the has .
updates to the local description of the sha
made by the dialogue.

o shared data element to be,
shtable routine and pass-
_changes call then makes the
nts and whatever changes were

The last call within the loop gets the next ’ tion. The loop
repeats until a null_idis retumed. :

Step 3: Purge transaction. After the loop ends the t
you. responsibility to ensure that transactions are:
that otherwise couid run out.

on;canrbe purged saia!y Itis

3.2. Recording Shared Database Transactions

There are two major tasks that need to be performed when using the record/playhaek ha-
ture of Serpent for testing the application or user interface:

1. Recording shared database transactions.
2. Testing the application or user interface.

Since the steps involved in the second task can be performed indepéhdéntly of the imple-

14 CMU/SEI-89-UG-6

mentation language they are described later in the Application and Dialogue Testing part of
thus gwda. RN

. ‘Beiore tasting the appltcatnon or the dialogue however, you must first record the transactions
yv.testing. Figure 3-5 illustrates the basic operations for recording

. type transaction;

start recording("recording”, "test data: 5.7.3");

transaction = start transaction QO:

:saction (txansaction):)

- transaction = start_transaction

transaction = start transscti

commit_ transaction (t:mqpétion) ;

/*

Stop recoxding.
*/

stop_recoxrding();

Figure 3-5: Recording transactions

Task Steps

There are three distinct coding steps involved in recording shared database transacﬁons
1. Start recording.
2. Send transactions.
3. Stop recording.

CMU/SEI-89-UG-6 15

Step 1: Start ‘recording. The first step is to begin recording by calling the
start_recording routine specifying both the name of the file in which to save the record-
ing and a message to: help,_adentnfy the file.

sup -Send mnsacﬂen;” After the call is made you may start sendmg transactions

the routine has executed correctly, and
Figure 3-6 shows the operations that Ser-

-status

The first of these status calls is.
codes. Valid status that each routine in
sections of this developer's guide. Su
hence, it is possible to make the simple
status.

returns an enumeration of status
um are deﬁned in the reference

The print_status routine prints out a user-deﬂned eror:message and the current status.

16 CMU/SEI-89-UG-6

33. Serpent C Language Interface

undafined values

Cor rréépondi ng to undefined values for all supported types

CMU/SEI-89-UG-6 17

s used to define the structure of a buffer within

Length of the buffer i

18 CMU/SEI-89-UG-6

DEFINITION

COMPONENTS

sting shared data instance.
ata instance.

"CMU/SEI89-UG-6 19

DEFINITION

20 CMU/SEI-89-UG-6

CONSTANT .

null_id

DESCRIPTION | ~ The null_id constant defines the null value for the id_type. This con-

stant cau;bo:used to test for null id values.

DEFINTION #define null_id (iid_id_type)-1

CMU/SEI-89-UG-6 21

TYPE

| serpent_data__types

DEFINITION

2 . CMU/SEI-88-UG-6

-

TYPE

 transaction_type

ariables of transaction_type are used to define transactions.

DEFINITION te transaction_type;

CMU/SEI-89-UG-6 23

CONSTANTS = .70

| undefmed values

llowing constants correspond to undefined values for ali types
by Serpent. These constants can be used to test for
-data components. When checking for an undefined

DEFINITION

#detine
ONDEFINED REAL (doublae)OxAAAAAAAAAAAAAAAA
UNDEFINED STRING (string)OxAAAAAAOO

24 ‘ CMU/SEI-89-UG-6

3.3.2. Routtnes

 This sub_sectlon descnbes the routines that make up the C language interface to Serpent.
These muﬁnes faﬂ'inm the following categories:

* put_ shared data
* remove_shared
. get__ﬁrst_chﬁn
« get_next_chan
* get_shared_data
* incorporate_changes
* create_changed_compone
« destroy_changed_compan
* get_change_type

* got_slement_name

* get_shared_data_type

¢ Record/playback
« start_recording
« stop__recording

e Checking Status

* get_status
* print_status

CMU/SEI-89-UG-6 25

FUNCTION

ta routine creates an instances for the specified
‘and retums a unique ID. The shared data in-
be initialized.

SYNTAX

PARAMETERS

RETURNS 3
The ID of the newly created shared data instance.

STATUS
ok, out_of memory, null element_name, overflow)

26 , CMU/SEI-89-UG-6

commit transaction procedure is used to commit a transaction

SYNTAX void commit_transaction(

’ transaction: in transaction_type */
PARAMETERS Existing transaction ID.
STATUS

CMU/SEI-89-UG-6

FUNCTION

_create changed component_list

PARAMETERS id Existing data instance id

RETURNS component names associated with a data instance,

STATUS

28 CMU/SEI-89-UG-6

PROCEDURE

d%§§i53};&ﬁanged_component_lisi

d.ggg?&y_chanqod_ccnpomt_list procedure releases
clated with a changed component list.

) o

SYNTAX

' void destroy changed |_component_list (
changed component_list : in out LIST */

PARAMETERS , yed component_list
. 2 List to be destroyed.

STATUS

FUNCTION

get__change__type

gnt_chmq-_typc function accepts an instance id as a parameter
~and retums the associated change type. '

SYNTAX

PARAMETERS id Existing shared data ID

RETURNS data instance ID.

STATUS ok, invalid . invalid_transaction_handle,

30 CMU/SE!-89-UG-6

A

FUNCTION . . -

get_eleme ’t_nam'e

The get element name function accepts an instance id as a

PARAMETERS Existing shared data ID.

RETURNS Element name associated with the shared data instance ID

STATUS ok,

CMU/SEI89-UG-6 31

FUNCTION

I

__ get_ﬂrst_chang ed_element

0 -q;t_ti:;stf'-?53i=hanqod_olmt function is used to get the id of
the first ch ' ent on a transaction list.

SYNTAX

PARAMETERS tra Existing transaction 1D

RETURNS The hairigle of the:fir

STATUS ok, invalid tran

32 CMU/SEI-89-UG-6

FUNCTION =

PARAMETERS

RETURNS

STATUS

CMU/SEI-89-UG-6 4 ®

FUNCTION

Qet__Shared__data

qct shu:.& data function allocates process memory, copies

Warning:

SYNTAX

PARAMETERS

RETURNS A pointer to changed data

STATUS ok, invalid id, out_ot_n-locy, meeapl.t._:gcogd

2 CMU/SEI-88-UG-6

FUNCTION

|

- Descmemon

- The get_shared data_type function is used to get the type associ-
 ated with a shared data eilement.

SYNTAX

»lo:pnnt data typu get_shared data_type(

/* slement_name: in string */
/*_ ccupon.nt nm in string */

PARAMETERS

The name of the shared data element.
cmpon.nt name Tha name: of the shared data component, or NULL.

RETURNS

The typ:é:éfthé -ishaied data eiement or record component.

STATUS

CMU/SEI-89-UG-6

FUNCTION

get status

FUNCTION -

| get_transactlon

0 get_transaction function is used to synchronously retrieve the
id for the next completed transaction.

SYNTAX ” ction_ﬁiiéd?”got_t:nnsaction 0O:

PARAMETERS

RETURNS

STATUS

CMU/SEI-89-UG-6 37

FUNCTION

get_transaction_no_wait

‘get_transaction function is used to asynchronously retrieve the
for the ni leted transaction.

SYNTAX transaction no_wait():

PARAMETERS

RETURNS The

STATUS ok, system ope: “_ ile p&t_availablo

38 CMU/SEI-89-UG-6

PROCEDURE

incorporate_changes

incorporate_changes procedure is used to incorporate
changes into iocal process memory without destroying unchanged infor-

PARAMETERS _
data with which to incorporate changes.

STATUS

CMUISEI89-UG-6 39

PROCEDURE

rint_status procedure prints out a user defined error message
the currant sta

ring */

PARAMETERS User-defined error message.

STATUS i None

40 CMU/SEI-89-UG-6

PROCEDURE

urge_transactlon

The purge transaction procedure is used to purge a received transaction
once the:contents of the transaction have been examined and acted

,Tﬁé&d;ﬁuzgn_g:uh@détion(

SYNTAX.. .. :
E /* transaction : in transaction_type */

);

PARAMETERS .Existing transaction ID.

STATUS -

CMU/SEF89-UG-6 ' rn

ROUTINE

Put__shared_data

put_sha: 3 data callis used to put information intc shared data.

put:_shared data (
71 tmcnct:.on in transaction_type */
' :.d T in id typo */

PARAMETERS ~ transaction The transaction o which the shared data should be

STATUS ok,
invalid id

42 CMU/SEI-89-UG-6

N

PROCEDURE

| -__re_move shared _data

The remove sha:.d data procedure is used to remove a specified
shared data instance from the shared database.

SYNTAX vo:.d remove shu_:.d data(

/*' transaction : in transaction_type */
PARAMETERS
STATUS

CMU/SEI89-UG-6 ' 3

PROCEDURE

rol back_transactlon

rollback ‘transaction procedure is used to abort a given
transacti d delate the associated transaction buffer.

SYNTAX

RETURNS A handle

STATUS

7 CMU/SEI-88-UG-6

PROCEDURE

serpent init procedure performs necessary initialization of the
la :

PARAMETERS MAIL_BOX constant defined in SADDLE generated
inclu 5

Fi defined in SADDLE generated

STATUS ok, null mailbox nama,

CMU/SEI-89-UG-6 45

PROCEDURE

PARAMETERS

STATUS ok

486 CMU/SEI-89-UG-6

PROCEDURE

‘start_recording

: recording procedure enables recording. Once

recording has been called, all transactions and associated

dataawi be saved out to the specified file until the stop_recording
‘is invoked

PARAMETERS

STATUS ok,

. SEIeUGE a7

FUNCTION

art_transaction function is used to define the start of a
-data modifications.

SYNTAX i on_typ.f: ”:ks»tl_:zt_t:ansaetion Q0:

PARAMETERS None.

RETURNS A unique transaction id

STATUS ok, out_of memory, overflo

48 CMU/SEI-89-UG-6

PROCEDURE

—— —_ —

_ stop_recording

——
——

|
|

The stop_recording procedure causes the current recording to be
stopped. . ¢

SYNTAX SR é@ﬁ.'.atop_:ccéme() H

PARAMETERS None.

STATUS ok, io_failure, invalid process_record

CMU/SEI-89-UG-6 49

50 CMU/SEI-89-UG-6

L 2

4. Ada Language Appllcatlon Development

This patt incfudes two sectlons

How fo Deve!op an Apphcatlen in Ada: A step by step specnﬁcatlon of the tasks
involved in developmg a Serpent application in the Ada programming language.

. Language Interface Reference: A detailed description of the
types, constants and routines available for developing Serpent applications in
ming language.

pplication in Ada

The main tasks for deveioping an appﬁcat:on for Serpent require that you define the shared
data, add information to-shared data, and retrieve information from shared data. There are
ailso two addtionai tasks, “"ch may appliect. recording and checking status. Each of these
tasks is descmbed in the subst

4.1.1. Task 1: Definin:
Defining shared data ir "

1. Create the shared data definition file.

The following is a brief desctiptia f each-of these two: steps The SEI Sermpent SADDLE
User’s Guide contains a more ¢) i oth these steps.

Step 1: Create the shared data d
type and structure of application information
database. The shared data definition is defin

he shared data definition file defines the
‘may be maintained by the Serpent shared
‘in an extemal ASCH SADDLE.

Figure 4-1 is a example of a shared data definition file for the sensor site status application.
The content of the shared data deﬁnmon file is mdepende ofthe nmplaq_xentatlon language
used. . _

The file shown in Figure 4-1 contains definitions for the data shared between the appllcatson
and the dialogue for the sensor site status apphcahon The three records define the type
and structure of the sensor, correlation center, and communication line apphcahon objects.
Note that these records only contain information to define the actual objects; they do not
specify how the information is presented to the end user.

Step 2: Run the created file through the SADDLE processor. Once theshared data has -

been defined, you can run the file through the SADDLE processor to generate an Ada pack- -
age specification containing Ada type specifications corresponding to the defined shared =

data structures. This package may then be "withed” in your Ada application in order to
declare local variables of the shared data types. This allows you to directly manipulate

CMU/SE!-88-UG-6 51

acnso:_oitt;_:tatuc :shared data

s L

. :sit. abb: :t::.ag[3]

etzo: ct:mg[8):
status:integez;
end recoxd;

and shared dat

ication generated by running the
. SADDLE processor s iliustrated

ity to various serpent types that are
; is followed by the stat of the
sensor_site_status package specificatit mmediately defined: mthm the package
specuﬁcatlon are two well-known constants: .MAIL BOX and. m FILE. These constants
are used in Task 2 to initialize Serpent. The)_rece
records defined within the shared data definition file;

4.1.2. Task 2: Adding Information to the Shared Database.

Once you have defined the application shared data, you can begin. té'develop the appli-
cation. The code segment from the sensor site status application in Figure 4-3 nllustrates
the basic operations for adding information to the shared database.

Preliminary Task Steps .
in preparation for the task of adding information, you need to complete twa praﬁmmary
steps:

1. With required packaged specifications.
" 2. Define local variables.

52 : CMU/SEI-89-UG-6

with so:pnnt type_definitions;
use n.xp-nt typ. definitions;

) o
'packaqc mccc a:.tu status is
onstant string :="888 BOX";
ILL] FILE constant string :="888.ill";
o type senso dd is record
; : . string(l..4);
_integesr;
 string (1..51);
string(l..9);

recoxrd
of sansgoxr
rrelation_center

guage header ﬁ

Step P1: With required pa-‘~vaged speclﬂcatlons. The first step is to "mth the serpent
package specification and the sensor_site _status pachage ‘specification. generated by the
SADDLE processor. The serpent package speciﬂcation contains the specification «f the

package specification contains the shared data types necessary to define local i ms!ances of
the shared data elements.

Step P2: Define local variables. The next preliminary step is to define the required ».Ieeal
variables. The first variable defined is transaction, which is of transaction_type. This

emc and oft, both of which are of type correlation_centex. These variables store:
local instances of the data that is going to be shared across the interface with the Serpent
system. The type definition for the correlation_center structure was automatically
generated by the SADDLE processor during step 2 of Task 1.

CMU/SEI-89-UG-6 53

variable maintains the handle for a created transaction. The next variables to be defined are .

with serpent.
use serpent;

 with sensor_site status;
‘use sensor_site_status;

cmc.name (1. .
ce . status

i;iaaaction,

"correlation_center",
nw
[4

t;insactiodr
"correlation_centex",
nw

cme’ address

)
commit_ transaction(transaction);
serpent_cleanup;
return;
end main’
Figure 4-3: Basic calls for adding information to the shared database

The two variables that follow, eme_id and oft_id, store the ids of the shared data in-
54 CMU/SEI-88-UG-6

stances created in shared data. It is necessary for the application to maintain thns infor-
mation, since- it is the only way to correlate end-user updates with local application infor-
maﬁm when mulﬁpie instances of a single shared data element are used.

4‘ Commrt the ttansactmn,
5. Clean up. : .:' :'f ._: E

sexpent _ init call and passing the: n:m nox and ILL FILE constants generated by the
SADDLE processor dunn -step;zoﬂask 1.

Step 2: Starta m:acﬂon. 'Before information can be added to the shared database it is
necessary to start a transactlon All addmons or modlﬁcehons to the shared database must
be performed as partofa transacho 2

Step 3: Add lnformaﬂan ta‘the shamdsdutabase.' Once a transaction has been started,

e to shared data does not occur until

Step 4: Commit the transaction.
i¢ also possible t__o z_o!{ back the transaction

the transaction is committed. Up to this poi
so that none of the changes to shared data

Step 5: Clean up. The serpent_ :clmup routine - must be invoked before exiting the
application. It is important that you complete th«sstep‘: te release alt aﬂocated system
resources.

4.1.3. Task 3: Retrieving Information from the Shared Database

Once application data exists in the shared database it may be prasented to the end-user
using one or more of the available technologies. The end-user may in tum make:modifica-
tions to this data. These modifications are sent back to the application to be updated in the
application’s local database. It is therefore necessary for the application to retneve mfor-;
mation back from the shared database. :

The Serpent interface provides both synchronous and asynchronous calls 'br' getting infor-
mation back from the shared database. The following code segment from the sensor site
status application in Figure 4-4 illustrates the basic calls required to synchronously retrieve
data from the intertace.

CMU/SEI89-UG-6 55

procedure gtt_utoz_updatos is

- c»xntantl. :

oft Dame : conatant string := "OFT";
gznn status oon-tant integer := 0;

t:ans-ct.xon g.t transaction;
id := get_ £:.:zt cha.nq.d olmut:(tztuacti.on) ;

while id /= null loep

shared _data elemant := get_ from hshtabl-(xd table, id):;
mco:po:nto cha.nqos(

transaction,

id,

shared data_element’
):

id := get_next_changed_element (transactiom) ;

end loop;
purge_transaction(transaction):
return;

end get_user_updates;

Figure 4-4: Basic calls required to retrieve data synchronously

56 CMU/SEI-88-UG-6

Task Steps
P The task of tetrieving information from the shared database involves three distinct coding

J : get_transaction routine waits until a transaction is
avaliabi Aand then returns ‘& handle. for this transaction. To poll for a new transaction
asynchronously it is. pessib!eu Call the get_transaction_no_wait routine, which wil
s1e i no available.

Step 2: Updatclocll database. Ttansachons can be thought of logically as a list of
changed elements. The next call, q.tf" first changed element, returns the id of the
first changed element on t n then be used to access several types of infor-
mation about the shared d

correlation between the shared data ids and the actual data
anges successfully into its existing local data. For the purposes of

The application must
items to lncorporamf _______

this example, it is as that this database is:maintained as a hashtable indexed by the
shared data element id. The U then is to incorporate all of the

updated is retrieved from thy
ing id as an index into the ashtab
updates to the local description of the
made by the dialogue.

The last call within the loop gets the r ; Nt fr ra:)sacﬁon. The loop
repeats until a null idis retumned. * ‘ : S

Step 3: Purge transaction. After the loop ends ansaction can be purged safely. Itis
your responsibility to ensure that transachons‘”' 'ger sinoe this call reieases resources
that otherwise could run out. ‘

4.2. Recording Shared Database Transactions

There are two major tasks that need to be performed when using the record/playback fea~
ture of Serpent for testing the application or user interface:

1. Recording shared database transactions.
2. Testing the application or user interface.

Since the steps involved in the second task can be performed independent of the implemen-

"CMU/SEI-89-UG-6 57

tation Ianguage they are descnbed later in the Application and Dialogue Testing part of this
guide.

Beiore ﬁesﬁng the application or the dialogue however, you must first record the transactions
: ”mﬂd like to use intesting. Figure 4-5 illustrates the basic operations for recording

"test data: 5.7.3");

commit_ transaction(transaction);

-=- Stop recorxding.
stop_recording;
end main;

Figure 4-5: Recording transactions

58 CMU/SEI-89-UG-6

Task Steps
There are three dnsﬁnct codmg steps invoived in recording shared database transactions:

2 “Send transadcons.
3. Stop recordlz_

ng. The first step is to begln reoondmg by calling the

ording has been called, all transactions and
ified file until the stop_zrecording routine is

assocnatecf data will be
invoked.

4.2.1. Checklng Sta
: status on exit. It is good software engineering practice to

3 th utine has executed correctly, and
shows the operations that Ser-

provide appropriate recovery actions if it has not
pent provides for examining

transaction :=

if get_status /= ok then
print_status ("bad status
return;

end if;

transaction");

Figure 4-6: Operahons for examtning-the status

The first of these status calls is the gct stat s, wh : i‘ns an enumeration of status
codes. Valid status that each routine in Sewpent'may retum am defined in- the reference
sections of this developer's gulde ..

The print_status routine prints out a user-defined error message and the current status

CMU/SEI-89-UG-6 59

43. Serpent Ada Language Interface

4.3.1, Types and constants

This suhsachon contams the*type and constant definitions that are used in the Ada language
face to the Serpent ¢ The following is a list and short description of each of these

' mplete description immediately follows:

undefined values

Con ondlng to undefined values for all supported types

60 CMU/SEI-89-UG-6

The buffes type is used to define the structure of a buffer within
hared d

DEFINITION

COMPONENTS Length of the buffer in bytes.

Address of the actual buffer data.

CMU/SEI-89-UG-6 61

DEFINITION

COMPONENTS

_ nged or invalid change.

remove. Remove existing shared data instance.
crest Newly created shared data instance.
Modified existing shared data instance.
remove Rem shared data instance.

' shared data instance.

CMU/SEI-89-UG-6

TYPE

id_type

§ » .-DEscalP-T_ioub - _The id type is used to uniquely identify shared data elements.

DEFINITION type id_type is new int;

CMU/SEI-89-UG-6

IH

J.
|

 null_id constant defines the null value for the id_type. This con-
 stant can be used to test for null id values.

DEFINITION

m;ll_:.d constant 'i;d_typc;

CMU/SEI-89-UG-6

_

TYPE

serpent_data_types

DEFINITION typ. cu:p.nt chta ,_types is (
e ‘serpent boolun,«:

CMU/SEI-89-UG-6 65

TYPE

transaction_type

" Vagiables of transaction_type are used to define transactions.

DEFINITION typs transaction_type is private;

66 CMU/SEI-89-UG-6

CONSTANTS:

_undefined values

e followmg constants correspond to undefined values for all types
supported by Serpent. These constants can be used to test for
ndefined shared data components. When checking for an undefined
record value # is best to check the buffer length failed for

:mmn_nmm LENGTH.

mm m constant integer;
UNDEFINED: m constant integer:’
mu':r.m REAL : constant real;

S'.I'RING : constant string:
uawmn RECORD : constant record;
'UNDEFINED ID : constant id’ | ‘type;

UNDEFINED BUFFER] msu ' ":cnn:tant integer:;

DEFINITION *

CMU/SE}-89-UG-6 67

4.3.2. Routines

This subsection describes the routines that make up the C language interface to Serpent.
These muﬁnes fall into the ﬁollowmg categories:

) _tnitiahzatlon/cleamp

< get jon.
. get transactlon:*

« put_shared_data
- remove_shared_data

« get_first_changed_element
* get_next_changed_ elemen
 get_shared_data

* incorporate_changes

» create_changed_component_li
» destroy_changed_component | ﬁst
eget_change_type @
* get_eiement_name

* get_shared_data_type

¢ Record/playback
« start_recording
« stop_recording
e Checking Status

* get_status
« print_status

68 CMU/SEI-89-UG-6

FUNCTION

|
|

‘add_shared_data

|

 DESCAIPTION

he add_shared data routine creates an instances for the specified
shared data element and retums a unique ID. The shared data in-
stanced may or may not be initialized.
SYNTAX _ Mctxon add_ ehl:cd data (
o tznuct:.on :im transaction _type;
clmt nun, cenponont name : in string:;
data : in- sytt-n address
) :etn;x‘:‘_i.d_type
PARAMETERS

t:tnnctmn ”
The transaction: fOf whuch this operaﬁon is defined.

elemeant name The name of the sharec_l daa element.

component_name The name of a specific.component to be initialized with the data or nul if
the data cormesponds:to _emire element

data data or nulf pointer if non-initialized.

RETURNS S
The ID of the newly created shared data instance.

STATUS
ok, out_ of memory, null element nama, overflow)

CMU/SEI-89-UG-6 69

: 'ROUT INE

commit_transaction

DESCRi IPTION Ihe commit_transaction procedure is used to commit a transaction
i “tothe shared database.

SYNTAX . procedure comit;&m;ction(
© ' transaction : in transaction_type

PARAMETERS transact. : Existing transaction ID.

STATUS ok, out_of memory, a.mlxd_t:mact;on_hmdlo

70 CMU/SEI-89-UG-6

FUNCTION

~ create_changed_component_list

The create 1 .changed component_list function accepts an in-
© stance nd as a parameter and creates a list of changed component
names. '

SYNTAX 8 vfunct:.on creste_changed component_list (

PARAMETERS i Existing data instance id

RETURNS The fist of changad component namas associated with a data instance,
or NULL if none.. :

STATUS ok, invalid id, ot _of_m-no:y, ow_not_a_:-cozd

CMU/SEI-89-UG-6 n

T

PROCEDURE

-] e

| __de*s{t!éy_’_éhangr_ed_com ponent_list

destroy changed component_list procedure releases
storage associated with a changed component list.

SYNTAX fp:oe‘du:o d..:t:oy ::hanqod |_component_list (
L e chlaqod component_. .'I.:ut : in LIST
sE ._.): .

PARAMETERS chang.d .component_list
' Listto be destroyed

STATUS

72 CMU/SEI-88-UG-6

FUNCTION - =

The get_change_type function accepts an instance id as a parameter
s tha associated change type.

PARAMETERS Existing shared data ID
RETURNS rad data instance ID.
STATUS ok, :.nval;d_ invalid transaction_handle,

invalid id

CMU/SE!-89-UG-6 3

FUNCTION

get_element_name

qot _element name function accepts an instance id as a
:__parameter and retumns the associated element name.

SYNTAX z_ﬁftuuet;oquct olcnont nam.(

hyvrctﬁéﬁftt:inq;

PARAMETERS id Existing shared data ID.

RETURNS Element name ssoctatedw&ththeshareddata instance ID

STATUS

74 CMU/SEI-89-UG-6

FUNCTION. o

.,k e
e ———————

: Qef_flrSt_changed_elem ent

|

@ get_first changed elemant function is used to get the id of
the first changed element on a transaction list.

:s;nciﬁion qct__tiifit_chanq.d_.lmnt(
‘transaction : in transaction_type
) © ,: urn id t :

SYNTAX

PARAMETERS Existing transaction ID

RETURNS

STATUS ok, :.nvala.d_tmanct __band.lo , out_of memory

CMU/SEI-89-UG-6 75

FUNCTION

_geLneXt_dhgéqged_element

——
— e ——.

Descr IPTION 6 get_next_changed_element function is used to get the id of the

ed element on a transaction fist or retum null_id if the

SYNTAX '-;?vzzmcti&f‘qct_noxt;cihinqod_clmt(
-+ " transaction : in. transaction_type
) retura i :

PARAMETERS Existing transaction 1D

RETURNS The handie of the next changed slement

STATUS ok, invalid transaction handle, out_of_memory

76 CMU/SEI-88-UG-6

FUNCTION
° ,
get_shared_data
o
= DESCRIPTION " The get_shared data function aliocates process memory, copies
e ghared data into. process memory and returns a pointer to the data.
Warning: Record components may not have been specified and, therefore, would
® not contain valid data.
SYNTAX function gat_shtz.d_data(
t:anstcta.on in transaction_type
o id : in id typo
conpon-nt name : in string
) ‘x:tbm system.address;
PARAMETERS transaction - Transaction in which to find the shared data id.
id - Existing shared data id.
compon.nt name Nane of component for which to retrieve data, or
. entire-elament if NULL.
RETURNS A pointer to changed data
o
STATUS ok, invalid id, out_of memory, incomplete_record
@
@

PY CMU/SE89-UG-6

FUNCTION

get_shared_data_type

' The get_shared data_type function is used to get the type associ-

' . ated with a shared data element.

SYNTAX function get_shared data_type(
. element name, compconent name : in string
) return serpent_ data types;

PARAMETERS olwﬁ;;uﬁ The name of the shared data element.
component_name The name of the shared data component, or NULL.

RETURNS The type of:the sharsddata element or-record component.

STATUS ok, null element_: e Y

78 CMU/SEI-89-UG-6

FUNCTION

get_status

' The get_status function retums the current system status.

SYNTAX ' function goﬁ_jt&tus return status_codes;

PARAMETERS None. . .

RETURNS The current status.

STATUS None b

CMU/SEI-89-UG-6

FUNCTION

get_transaction

F{béf;&it_tzanuction function is used to synchronously retrieve the
- id'for the next completed transaction.

SYNTAX o £unct:.ou q.t_t::hiiction return transaction_type:

PARAMETERS None.

RETURNS Thé"tg_{alr_iéabtion ID for a completed transaction

STATUS

80 | CMU/SEI89-UG-6

FUNCTION

~ get_transaction_no_wait

e — . ————
—— ——

. The get_transaction function is used to asynchronously retrieve the
“id for the mxt;gq;npleted transaction.

[BSYNTAX . function ' get_transaction_no_wait return
.. transaction_type; .

PARAMETERS

RETURNS The transaction ID for-a completed transaction

STATUS ok, :ystin_@tion __fna.lad, not_available

CMU/SEI-89-UG-6 81

u

PROCEDURE

incorporate_changes

::g-_f The incorporate_changes procedure is used to incorporate
i changes mto local pmcess memory without destroying unchanged infor-
* mation,

SYNTAX e pzocndu::. :.nco:po:uto changes (
v id 1 dAn id type:

data : in syst. 'add:.s:

):

PARAMETERS id
data

Existing shared data 1D
omter to data with whwh to incorporate changes.

STATUS

82 CMU/SEI-89-UG-6

PROCEDURE

~ print_status

 DESCRIPTION The print_status procedurs prints out a user defined error message
© .. andthe current status.

SYNTAX procedure print_status (
7 ezzor.meg : in string

.

PARAMETERS .::o:_mq User-defined error message.

STATUS None

CMU/SEI-89-UG-6

PROCEDURE

purge_transaction

SYNTAX '-p:ocoduzn purge_transaction (

t:a.n:l.ct:.on s

in transaction_type

PARAMETERS Existing transaction ID.

STATUS

84 CMU/SEI89-UGH

ROUTINE
put_shared_data

- DescaipTion .

:-_: The put_shared data callis used to put information into shared data.
SYNTAX ‘ pzocoduro put_ cha.rod | data(
G t:;nuct:on 2 a.n transaction_type:
id : in id type;
elamant name : in string;
ccuponant neme: : in string;
data : cyst-n address
PARAMETERS transaction Thetransachon t&'»which the shared data should be
id Shared daza' m
e name of ghe shared data element.
the shared data component
STATUS ok, undafined shared : d&a typ., null_;ilmnt_nm,
invalid id o
CMU/SEI-89-UG-6 85

PROCEDURE

remove_shared_data

,_:-nov. shared data procedure is used to remove a specified
‘shared data msiance from the shared database.

SYNTAX . '»W. remove shared data (
tzmact:.on : in transaction_type:
olmm: name : in
id : inm ;d . type
):

ring;

PARAMETERS transaction Transaction from which to remove the shared data

STATUS

3 CMU/SEI89-UG6

——

PROCEDURE |

 rollback_transaction

The rollback transaction procedure is used to abort a given
ransactmn -and delete the associated transaction buffer.

pr:ncndu:o :ollback ,_transaction (

SYNTAX

: s in transaction_type
PARAMETERS Existing transaction 1D.
RETURNS
STATUS

CMU/SEI-89-UG-6 87

PROCEDURE

1[
|

sepe“‘-'"'t .

PARAMETERS MAIL_BOX constant defined in SADDLE generated

include file.
ILL_FILE constant. defined in SADDLE generated

STATUS ok, : g < null mailbox name,
null ill file am operation_failed

CMU/SEI-89-UG-6

PROCEDURE

e — — e —

~ serpent_cleanup

.- The serpeat_cleanup procedure performs necessary cleanup of the
- interface layer.

f:; . DESCRIPTJON .

SYNTAX procedure serpent_cleanup;

PARAMETERS None. | :

STATUS

CMU/SEI-89-UG-6 : 89

PROCEDURE

start_recording

hi tart_recording procedure enables recording. Once
_stu.-t recording has been called, all transactions and associated
data will be saved out to the specified file until the stop_recording
procedwa:s mvoked

SR prosedure start_secomstnst
~ transaction : in transaction_type;
file_name : in string

):

PARAMETERS file name File to-which to write aacordmg
message. . 'Becarﬁlﬂg descnption

STATUS ok, io_failure, alresdy recording

90 CMU/SE!-89-UG-6

FUNCTION

The start transaction function is used to define the start of a
shared data modifications.

SYNTAX ion start transaction return transaction_type;

PARAMETERS

RETURNS ue transaction id

STATUS

CMU/SEI-89-UG-6 : 9

PROCEDURE

procedure causes the current recording to be

PARAMETERS

STATUS

92 CMU/SEI-89-UG-6 |

5. Applicaﬁqn and Dialogue Testing

 the application or user interface:
database transactions.

Once you have made a
cation or the dialogue.

The app-test command will then simulate the dialogue manage r. This techmque allows the
application developer to test the application alogue manager. The appllcat:on
must be tested in the same directory as the nacord ‘was mads. ,

5.1.2. Testing the Dialogue
The same recording can also be used to test the user interface. In order to test the Sensor
Site Status dialogue (sss.dig), for example, you would run the dialogue-test command pro-
vided with Serpent specifying both the name of the dialogue to be tested and the name af.)
the file containing the recorded test data, as illustrated in Figure 5-2. e

The dm-test command will then simulate the application. This techmqmallows the dialogue .

specifier to test the user interface without the actual application.. It Is once again important
that the dialogue be tested in the same directory as the recording was ‘made.

% dn-toct sst. dlg recording

Playzng"blck journal file: recording

)hlslq. 'z'.qzm:.on test data, 5.7.3
- ack ted successfully

re 5-2: Testing the User Interface

o4 CMU/SEI-89-UG-6

5.1.3. Commands
This subsection oontains definitions of some commands provided with Serpent to assist in

:testtng Serpent appﬂcatlons and dialogues. The following is a list and short description of

each of these commands, A more complete description immediately follows:

to test an existing application by simulating Serpent execution
d to test an existing dialogue by simulating the application program.

"CMU/SEI89-UG-6 - 95

application-tast command can be used to test an existing applica-

tion by simulating Serpent execution. The application-test command re-

" quires a.recording of the application to be made prior to testing. The

apphcabcm 15t then be tested in the same directory as the recording
‘made;.: .

DEFINITION

PARAMETERS

RETURNS

96 CMU/SEI-89-UG-6

-application program. The dialogue-test command re-
mg.'E of the apphcatlon to be made pnor to testmg The

£ilename

PARAMETERS The name of the dialogue being tested. The dia-
lo :fo be in the working directory.
i@ containing the recording to be
RETURNS

W N = O

"CMU/SEI89-UG-6 o7

98 CMU/SEI-89-UG-6

Appendlx'-A Glossary of Terms

those components of a software system that implement the "core" appli-
" cation functionality of the system.

cification of the presentation of application information to, and in-
fons with, the end-user.

ent layer that controls the dialogue between the application and

t layer conceméd with low level interaction with the user. This
va aus I/O technologies.

transaction
essed at one time.

user Interface those components of

100 CMU/SEI-89-UG-6 1

SECUMITY CLASSIFICATION OF THIS PAGE

N—

REPORT DOCUMENTATION PAGE

‘. |

1. REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

- UNCLASSIFIED NONE
2e. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE
2b. DECLASSIFICATION/DOWNG RAOING SCHEDULE DISTRIBUTION UNLIMITED
N/A .

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SE1-89-UG-6

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-89-TR-12

Sa. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL
(If epplicable)
SOFIWARE ENGINEERING INST. SE1

7s. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

8c. ADORESS (City. State and ZIP Code)}

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. ADORESS (City, State and ZIP Code)

ESD/XRS1

HANSCOM AIR FORCE BASE

01731

8s. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTAUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
- SEI JOINT PROGRAM OFFICE ESD/XRS1 F1962885C0003

8c. ADDRESS (City. State end ZIP Code)

10. SOURCE OF FUNDING NOS.

CARNEGIE-MELLON UNIVERSITY © PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH PA 15213 ELEMENT NO. NO. NO. NO.
 J
63752F N/A N/A N/a
11. TITLE (Inciude Security Classification) _
SEI SERPENT APPLICATIN DEVELOPER'S GUIDE
12. PEASONAL AUTHOR(S) '
14. DA:I'E OF REPORT (Yr., Mo., Day) 18. PAGE COUNT

13a TYPE OF REPORT 136, TIME COVERED
: FROM. TO

16. SUPPLEMENTARY NOTATION

]

17. COSATI CODES
FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by dlock number)

DIALOGUE SPECIFICATION, PROTOTYPING, SERPENT, USER
- INTERFACE, USER INTERFACE MANAGEMENT SYSTEM

19. ABSTRACT (Continue on reverse if necessary end identify by block number)

THIS DOCUMENT DESCRIBES HOW TO DEVELOP APPLICATIONS USING SERPENT.

SERPENT IS A USER
INTERFACE MANAGEMENT SYSTEM (UIMS) BEING DEVELOPED AT THE SOFTWARE ENGINEERING INSTITUTE
(SEI). SERPENT SUPPORTS THE DEVELOPMENT AND IMPLEMENTATION OF THE USER INTERFACE FOR

A SYSTEM. IT, PROVIDES AN EDITOR TO SPECIFY THE USER INTERFACE AND A RUNTIME SYSTEM
THAT COMMUNICATES WITH THE APPLICATION TO DISPLAY DATA TO THE END USER.

20. OISTRIBUTION/AVAILABILITY OF ASSTRACT

uncLASSIRIEO/UNLIMITED] same as ey, [oric usens 3

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION

225 NAME OF RESPONSISLE INOIVIOUAL
KARL H. SHINGLER

22b. TELEPHONE NUMBER
{Inciude Ares Code)

412 268-7630

22¢. QFFICE SYmMeoL

SEI JPO

DO FORM 1473, 83 APR

CDITION OF 1 JAN 73 1S OBSOLETE.

4

SECURITY CLASSIFICATION OF THIS pl\

|

