
C ,OPY S' 2

- Carnegie-Mellon University

V '- Software Engineering Institute

N

4
SEI Serpent Application
Developer's Guide

9E~CTEF

al 11,B 19

A:_ -'
z /

User's Guide
CMU/SEI-89-UG-6

ESD-89-TR-12
January 1989

SEI Serpent Application
Developer's Guide

User Interface Prototyping Project

Approved for public release.
Distnbution unlimited.

Software Engineering Institute
Carnegie M,' on University

Pittsburgh, Pen,. vania 15213

This user's guide was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this guide should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This guide has been reviewed and is approved for publication.

FOR THE COMMANDER

•
Karl Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1989 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U S Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria. VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.
Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1. Introduction1

.2.0wevfli@w 3
2. 1. The Serpent. Architecture 3
2.2. Shared Database 4
2.3. Application :0evielopment 6
2...Apliation arnd User Interface Testing 7
:2.5. Sensor Site Status Example 7

3. C Language Application Development 9
3.1. How to :Develop an Application in C 9

3. 1.1. Task 1: Defining the Shared Data 9
3.1.2 Task-2: Adding jnformation to the Shared Database. 11
3.1 .3.. Task 3: Rettdevng., Information from the Shared Database 13

*3.2. Recording Shared.:Daiitabase Trnsactions 14
3.2.1. Checking Status... 16

3.3. Serpent C Language -interface 17
3.3. 1. Types. and Costants 17
3.3.2. Routines: 25

04. Ada Language Application DeV6loptment, 51
4.1. How to Develop an: Application in Ada 51

4.1.1. Task 1: Defining the ShamdDt 51
4.1.2. Task 2: Adding lnformatin o h ha:edDaabse 5

*4.1.3. Task 3: Retrieving Information fi-ir the Shared Database 55
4.2. Recording Shared Database Trrsaions 57

4.2.1. Checking Status 59
4.3. Serpent Ada Language Interface 60

4.3.1. Types and Constants 60
*4.3.2. Routines 68

5. Application and Dialogue Testing 93
5.1. Playback/Record 93

5.1.1. Testing the Application 93
*5.1.2. Testing the Dialogue .93

5.1.3. Commands 95

Appendix A. Glossry of Terms S

CWLSEI-e-uG4

ii~CtdU/SEI-89-UG

List of Figures
FiRgure 2-1: Serpent Architecture 3
Figure 2-2: Shared Database 5
, Figure 2-3: Shared.Data Instantiation 6

.Figure 2-4: SensorSite Display 8
* Figure 3-1: ,::A:swd data definition file 10

Figure 32i: C language header file 10
FVigurW3e -3-Basic calls for adding information to the shared database 11
Figure 3-4 m.: Basic equired. to retrieve data synchronously 13

*Figure 3-5: Recording transactions 15
Figure 3-6; Operations for examining the status 16
Figure: -*-: A shared: data definition file 52
Figur-a 4- : Ada language header file. 53
Figure 4-3: Basic calls for adding information to the shared database 54

SFigure 4-4: Basic cafsrequired to r etrieve data synchronously 56
Figure 4-5: Recoli ig transactions 58
igure 4-6: etIfor examining the status 59

Figure 5-1: Testn.. the Application 93
* Figure 5-2: Testing the User Interface. 94

Aoession Fer
NTIS GRA&I

DTIC TAB 0
Unannounced .
Justifigation

By -
Distribution/
Availability Codes

C.-C
Dist Speoial " .

I 6

CMU/sEI-6,-UG- III

SEI Serpent Application Developer's Guide

1. Introduction,

. Serpent is a User interace Management System (UIMS) that supports the development and
execution ofaiiiuser iInterface of a software system. Serpent supports Incremental devel-
opmeof W he fuser'I.hterface from:the prototyping phase through production to maintenance
..... sustain engineering. S e ip :iencourages a separation of functionality between the
user interface portion of-an application and the functional portion of an application. Serpent

*1 is also easily extended to support additional input/output technologies.>

This Application DeveWWs Guide describes how to develop applications using Serpent.
rThe contenvts ofthis guide Iassume that you have read and understood the concepts de-

scribed in Introductiortto:Serpenti; it also assumes that you are experienced with using
C or Ada.

Parts
This guide's major pa-ts .e:

Overview: The overview part of this gude: provides. a general description of
the role of an applicaiolin: a sotware syvstm developed using Serpent It also
describes a concepulfamewo for applicationdevelopment.
C Language Application Development: ..,,two sections In this part address
the needs of C language appao d rs. The first section describes
how to develop an application usifgv.p in the C programming language.
The second section contains a complete-set of descriptions of altthe constants,
types, and routines available to the: C: Wguage Serpent Applicadlon:developer.
Ada Language Application Developent: The two sections In this part ad-
dress the needs of Ada language application developer The first section de-
scribes how to develop an application using Serpent In the Ada programming
language. The second section contains a o "lete set of descriptionsot.all the
constants, types, and routines available: to the Ada language Serpent, applca-
tion developer.

* Application and Dialogue Testing The two sections in this part of this guide
describe an approach for testing the application and dialogue portions of a soft-
ware system developed using Serpent, independent of the implementation lan-
guage selected. The first section describes the task steps involved in testing
while the second section describes commands available to the application or
dialogue tester.

The glossary provides definitions and explanations of terms that are used In this guide.

CMU/SEI-e-UG-6

References
The purpose of this guide is to provide you with sufficient information to develop Serpent
appllcatlons. The following, publications address other aspects of Serpent.

* An i-ntroduction to rpent: Describes the roles involved in the use of Ser-
pent, the componnor--f Serpent, and the steps involved in using Serpent for
particuler appilcatlos~f

*SADDLE User# Gude: Explains how to use the SADDLE language and

* D,&;9kogw.rEditor Usees Guide'Describes how to develop and maintain a dia-
logue::usnthe dialogue.eio
*Slang- Reference Manual: A ;conplete reference to the Slang dialogue specifi-
cation language.,...

*Guide to Adding Technologies: Describes how to add 1/0 technologies to
Serpent -or an existing Serpent appllca~or

...U.

2. Overview
A main goat of Serpent is to encourage the separation of a software system into an appli-
cation portion and an user interface portion in order to provide the application developer with
apf sentation independent Interface. The application portion consists of those components
of a software systemhIa implement the "core" application functionality of a system. The
user interface portion consists of those components that implement an end-user dialogue. A

.0 dialogue is a specillcaaton of the presentation of application information and end-user inter-
actions.

During. the design stage, thesystem designer decides which functions belong in the appli-
cation component and. which beongI i the user interface component of the system.

2.1. The Serpent Architecture

Serpent isaimplemented using -9 standard: .UIIMS architecture. This architecture (see figure
2-1) consists of three major layr: th. presentation layer, the dialogue layer, and the
application layer. The threeltferent layers of the standard architecture are viewed as pro-
viding differing levels::ofend-User feedback.

application
layer

dialogue
layer

presentation layer
otherx i! ,;: :
1/0 window

Sc
technology

system

::.:: :

Figure 2-1: Serpent Architecture

* CMU/SEI-M-UG-6 3

The presentation layer consists of various input/output technologies which have been incor-
porated into 'Serpent. tnputoutput technologies are existing hardware/software systems that
perform sme Wle of generalized interaction with the end-user. Serpent is being distributed
with an Interface to the X Window System, version 11. Other input/output technologies can
be iftgrated with Serpent. See the Guide to Adding Technologies for a discussion of how
this can be accomplished..

Onei way of viewing t"threeii levels of the architecture is the level of functionality provided
tot user input Th.p*presnto-ation layer is responsible for lexical functionality, the dialogue
layer or syntacticiuncdonality, and t application layer for semantic functionality. In terms
of a menu example, the presentation layer has responsibility for determining which menu
item was selected and for piisentirg feedback which indicates which choice is currently
selected. The dialoue layer has responsibility for deciding whether another menu is
presented and presenting It or whether the choice requires application action. The appli-
cation layer is: le for implementing the command implied by the menu selection.

The end-user interface for a software system I specified formally as a dialogue. The dia-
logue is executed by the dialogue mmnagwat runtime in order to provide a end-user inter-
face for a software system. The dialogue specifies both the presentation of application infor-
mation and end-user interactions. The Serpent dialogue specification language (SLANG)
allows dialogues to be arbitnadly complex.

The application provides the functional portlon of the softwaresystemn in a presentation inde-
pendent manner. It may be developed In Ct Aa, or other programming languages. The
application may be either a functional simulation for prototyping purposes or the actual appli-
cation in a delivered system. The actions of the applaton layer are based on knowledge
of the specific problem domain.

2.2. Shared Database.

system. In an active database, multiple processes ae siowed o update a idatabase.
Changes to the database are then propagated to each use~r of the idatabase.-his -active
database model is implemented in Serpent by a share database that logically exists, be-
tween the application and I/O technologies. The application can add, imodify, qty,! or
remove data from the shared database. Information provided to Serpent by the application
is available for presentation to the end-user. The application has no knowledge of the pres-
entation media or user interface styles used to present this information. i:~~iii.i?::i~ .i.-

Information in the shared database may be updated by either the application or I/tchno- i .ii:i
ogles. Figure 2-2 illustrates the use of the shared database in Serpent. / ::::

Serpent allows the specification of dependencies between elemnts-In the.shred database
in the dialogue. These dependencies define a mapping between application data, presen-
tation objects and end-user input. The dialogue manager enforces these dependencies by

4 CMU/SE-49-IJG-6

: " I Application

Serupen2 Shared Database spcfe

Fiur 2-2 ShrdDtbs

operating on the information stored in the shared database until the dependencies are met
Changes are then propagated to either the applicatio or the 1/0 technologies as appro-
prate. See the. SLANG Refernce defor a. further discussion.

The l:.::nd structure of information that can be maintained in the shared database is de-
fined externally in a shared data deffnitlorr file. This corresponds to the database concept of
schema& A shared data definition file ismrqufred for each application.

A shared data definition file consists of both aggregate and scalar data structures. Top-level
data structures become shared data elment that may be instantiated at runtime. Nested
data structures become components that are considered part of the shared data element
Serpent does not allow nesting of records.

It is possible to define multiple instances of a single shared data element. Shared data
elements are instantiated by specifying the element name. Each shared data Instance is
identified by a unique ID. IDs must be maintained by the application to identify shared data
instances when multiple instances of a single shared data element exist. Figure 2-3 pro-

* vides an Illustration of shared data instantiation.

Serpent supports both a synchronous and asynchronous system model. This is necessary
since an application often needs to satisfy real-time constraints and cannot necessarily af-
ford to waft for end-user input. This introduces a situation where mu"pl processes, which
are using the shared database, may access or modify the database oncurrently. This con-
current access of the shared database may result in a situation where the integrity of the
database -is corrupted.

*CMUISEI-8O-UG-6 5

Shared data record Instantiation Shared data Instances

..... .i ::: iJohn Sm ith

employee: record John Srt
name: string[50];101 Main Street
address: string[50]; (212) 555-1234

phone: string[10];
end record;• : ::: 22 Park Avenue

......... Harry Altair

...... : i64 5th Avenue

(212) 712-6873

Flgure Shared Data Instantiation

This problem is solved In Serpent through the use of database concurrency control tech-
niques. Updates to the Serpent shared database are packaged in transactions. Trans-
actions are collections of updates to the shared databas tt are logically processed at one
time. Transactions can be sta.te4 committed, or railed bac Committing a transaction
causes the udates to be made to the shared: database. Rolling back a transaction causes
termination of the transaction. A transaction which is started but not yet either committed or
rolled back is said to be open. There may beseverasl trnactions open at the same time.

2.3. Application Development
There are three major tasks which need to be performed when developing an application for
Serpent:

1. Define .,hared data.
2. Add information to shared data.
3. Retrieve information from shared data.

To perform each of the preceding tasks, there are several steps you need to complete. The
first task is completely independently of the language in which the application was devel -
oped. The last two tasks are also both language independent, but how you spectfy them
depends on the programming language you chose for application development Currently
Serpent supports two different language interfaces, C and Ada. Therefore, the two parts
that follow specify and illustrate how to develop an application in the C and Ada program-
ming languages, respectively.

6 CMU/SEI-89-UG-6

2.4. Application and User Interface Testing
* Therecord/playback feature of Serpent allows you to record transactions between the appli-

cation and dialogue manager, or between the dialogue manager and the various technol-
ogies. These transactions may then be played back at a later time. This is useful in per-
forming regression and/or stress testing of the application, dialogue or technologies.

* . There are two major tasks that need to be performed when using the record/playback fea-
ture of Serpent:for testing the application or user interface:

1. Recordhng shared databasetransactions.
2 Testing the applicaton or user interface.

To perform each of the preceding tasks, there are several steps you need to complete. The
specification of steps in the first task is dependent on the programming language selected
for application development, Therefore, a description of the steps involved in recording
shared database transactions is included In both the C language and Ada language appli-
cation development parts of this guide.

The execution of the steps Inithe second task are performed independently of the language
in which the application was developed. These tasks are described in the Application and
Dialogue part of this:guide.

2.5. Sensor Site Status Example
The sensor site status (SSS) application is an example of an application developed using
Serpent. Figure 2-4 is an illustration of the 'spider chart" display which is one possible end-

* user interface for the application.

The sensor site status application is adapted from a command and.control application. The
purpose of the application is to monitor and display the status of various sensor sites and
their associated communications lines to the two corretation centers.

The columns of rectangular boxes on the dght and left sides of the spider chart display (for
example, GS1, GS2) represent sensor sites. The circles in the middle of the display repre-
sent the correlation centers that collect information from the sensors. Each sensor site com-
municates with both correlation centers; this is represented by the duplication of sensor site
boxes on both the right and left sides of the display. The lines present the communication
lnes between the sensor sites and the correlation centers.

An operator may display detailed information concerning a sensor site by selecting a sensor
site box corresponding to that sensor. This causes a detailed window to appear displaying
information concerning the status of the sensor, the date and time of the last message, the
mason for outage (RFO) and the estimate time to returned operation (ETRO). These fields
may be modified by the operator. Sensors may have one of three status: green, yellow and

CMU/SEI-89-UG-6 7

red. For sensor which are not fully operational (i.e. status is green) the ETRO is displayed
to the outside of the sensor site box. ETROSs are also displayed over communication lines
that are not flyoperational.

Throughout this guide, a reference to the sensor site status application implies a reference
to oti example.

17511230ZI Gal3 I4I1SSOZ

092 n 083ln

ESu: Red

Last Message: 14/1205Z
RFO: Eleatrlosi Staiu*
ETRO: 14/1330Z

Figure 2-4: Sensor Site Display

S CMU/SEI-89-UG-6

3. C Language Application Development
This part includes two sections:

*:How to Develop an Application in C: A step by step specification of the tasks
involved In developing a Serpent application in the C programming language.

* Serpent C Language Interface Reference: A detailed description of the types,
* constants and routines available for developing Serpent applications in the C

programming lan~guage.

3.1. How to Develop an Application in C

The main tasks for dm ing an application for Serpent require that you define the shared
data, add information to shared data, and retrieve information from shared data. There are
also two additionat1asks which may appled: recording and checking status. Each of these
tasks is described in the subsections that follow.

* 3.1.1. Task 1: Defining the S ared Data
Defining shared data. involves two steps:

1. Create the shareddata definition file.
2. Run the created file through theSADDl processor.

The following is a brief description of each of these t o steps. The SEI Serpent SADDLE
User's Guide contains a more complete description of both these steps.

Step 1: Create the shared data defho ile The shared data definition file defines the
*type and structure of application informationthat may be maintained by the Serpent shared

database. The shared data definition is defined in an external ASMIfilie in SADDLE.

Figure 3-1 is a example of a shared data definition file for thi sensor site status application.
The content of the shared data definition fle is independent of the implementation language
used.

The file shown in Figure 3-1 contains definitions for the data shared between the application
and the dialogue for the sensor site status application. The three records define the type
and structure of the sensor, correlation center, and communication line application objects.
Note that these records only contain information to define the actual objects; they do not

* specify how the information is presented to the end user.

Sep 2: Run the created file through the SADDLE processor. Once the shared data has
been defined, you can run the file through the SADDLE processor to generate a C language
header file. You then include this header file with your C application In orderto declare local

* variables of the shared data types. This allows you to directly manipulate shared data struc-
tures in C. The C header file generated by running the shared data definition file shown in
Figure 3-1 through the SADDLE processor is illustrated in Figure 3-2.

CMU/EI--UG-6 9

sensor site-status shared, data

senso . record
site abbr:stzing3];
status : integer"
site: string C01 ,
last ziesfas stLWS]
rf 0:stig(1

a"d record:

carxelatIon-center .zecowd.
un:string (31;
status: intager;

end record;

cou iation Lime irecord
£rcm sensor:id of sensor;
to cc.:±d of correlation center;
Stro: string[I e
status :integer;

end record;

end shared datar

Agum 3-1: A shared data definition fie

#define IBMh 30X "ss: mailox1

#define rLLZ "Eass-.iX'lt

typdof struct{
char *Itesb[4
int status;
char xite[513;
char last inssage (91;
char zfo[5'11;
char stro(9];

) sensor;

typedef struct {
char nrn[43
iLnt status;

)correlation Center;

typedef struct{
i4dtype from sensor; /*ID of sensor *
id type to c; /*ID of correlation center] */
char etro[93;
int status;

)caminnication line;

MgUrs 3-2: C language header file

10 CMU/SEI-89-G-6

In Figure 3-2.the first two lines in the file define two well-known constants: vAiL sox and
ILL r=z These constants are used in task 2 to initialize Serpent. The three typedef a
cariusporid to the records defined within the shared data definition file.

32.Task 2: Add~ng Information to the Shared Database.
Once you have defied the application shared data, you can begin to develop the appli-

cation. he codesegmnent from the sensor site status application in Figure33ilutae
the basic operatlonahifor adding Information to the shared database.

#i~me ~'pen Iz" / *serpent interface definton*
tN-cl-d "sash" /* application data structures *

#def ine OU ST&2U 0
#defiza la OSIATUSI

#def LSC JD STiMU 2

trnato type txansaction; /* transaction handle *
correlation center <=a,oft; /* correlation centers *

Serpent lmit (W2 301, 1ILLFILE);

strcpy (oft. name, "OFTu);
*oft status -MZ QRZ L8T *

transaction tart; transactoniC;

awcid addhredL4Cata '(:

* "correlation-center"

NULL

0 oft id -add shared data (
transacti'on,
"correlation-center",
N=LL

comit transaction (transaction);

sezpent,_cleanup0f;

Figure 3-3: Basic calls for adding information to the shared database

CMU/SEI-W9-UG- 1

Preliminary Task Steps
In preparaton for the task of adding information, you need to complete two preliminary
steps:

1. Ilrcude header files..:

Z. Define local variabls,

Sep PI: Include headw ties Include the two header files, as shown in Figure 3-3. The
first-of these two flies is caed serpenth and contains the definition for the Serpent external
interface. ThWi ust beIncluded first since it contains type definitions that are used in the
second i II.. The second file that needsto be included is the C language header file gener-
ated in the previous step, when you ran the shared data definition through the SADDLE
processor. This file, smsh In te example, defines the structure of the shared data.

Stop P2: Defie ca vvireb The next preilminary step is to define the required local
variables. The first varable defined is transaction, which is of tranactioen type. This
variable maintains the handle for created trasaction. The next variables to be defined are
= and oft, both of which are of type correationcentz. These variables store

local instances of the data thatjs goingto be shared across the interface with the Serpent
system. The type defiiin for the correlation center structure was automatically
generated by the SADDLF.,prcessor during step 2 of task.,4

The two variables that fow, mo id. ard: of i store, theids of the shared data in-
stances created in shared data. Itis necessary for the application tonaintain this infor-
mation, since it is the only wayio coe t el and-user updates with local application infor-
mation when multiple instances of a single shared dataelement are used.

Main Task Steps
The main task of adding information to the shrd database invohtes five distinct coding
steps:

1. Initialize Serpent.
2. Start a transaction.
3. Add shared data to the interface.

4. Commit the transaction.
5. Clean up.

Step 1: Initialize Sepent, Once the appropriate variables have been declared It is possible
to begin describing the logic. The first step is to initialize the Serpent system using the
szepent.init call and passing the ma= sox and =L, _xz constants generated by the
SADDLE processor during step 2 of task 1.

Step 2: Start a transactlon. Before Information can be added to the shared database it is
necessary to start a transaction. All additions or modifications to the shared database must
be performed as part of a transaction.

12 CMU/SEI-89-UG-6

Step 3: Add Information to the shared database. Once a transaction has been started,
you can begin to add information to the shared database as part of this transaction.

Step 4: Commit te tzwnsacton. The actual change to shared data does not occur Until
ttwe bunsaction is committed. Up to this point it is also possible to roll back the transaction
so that none of the charges to shared data occur.

Step 5: Clean wp The~tcleanup routine must be Invoked before exiting the
application..... Is Important that..you complete this step, to release all allocated system

3.123. Task 3: Retrieving Information from the Shared Database
Once application data exists in the shared database it may be presented to the end-user
using one or more of the available technologies. The end-user may in turn make modifica-
tions to this data. These modifications aresent back to the application to be updated in the
application's locl database. It is therefore necessary for the application to retrieve infor-
mation back from the shared database.

The Serpent interface provides both synchronous and asynchronous calls for getting infor-
mation back from the- shared database. The following code segment from the sensor site
status application in Figure-3-4 illustrates the basic calls: required to synchronously retrieve
data from the interface.

Retzieve Lngomation from shared database.

transaction - et tauc oO

id - gt_ £xat changedesmat (transactioa4;

while (id I- null id) (

sheaed data elument - et £z0M*hashtable (idtable, id);
icoz-po2ate _changes(tzanssct~ion.id, haed data elinmnt);

Id - get neztchanged elanst (transactioni)

puzge_ tzanat ion(tanaaction);

Figure 3-4: Basic calls required to retrieve data synchronously

CU/El-69.UG-61

Task Steps
The task of retneving information from the shared database involves three distinct coding
steps:

I Got a transaction.
Z. Update local database
3. Purge transactimlL

Stop 1: Get a.lMUaOn. The first step in retrieving information from the shared data
bases:i tdo get a trnsaction. The get.ansacti n routine waits until a transaction is
avaffabfe and. then'returns a handle for this transaction. To poll for a new transaction
asynchronously, It is possible to cal the et tansaction no wa routine, which will
return nt -)-la.11[iIf no transaction is availtable.

Stop 2: Update lAW daabase. Transactions can be thought of logically as a list of
changed elemer t.: The next cal, get _ztd .-hanged elmant, returns the id of the
first changed element on the 119L Thi id can th be used to access several types of infor-
mation about the shared data eliment..

The application must maintai a: correlation between the shared data ids and the actual data
Items to Incorporate changssuccessfully Into its existing local data. For the purposes of
this example, It is assumed that this database is mair-tied as a hashtable indexed by the
shared data element Id. The purpose of twhiia loop then :is to incorporate all of the
changes into this local database or Nhmhitable. XpoIln, to the shared data element to be.
updated is retrieved from the hashtabieusing the gqetoio haahtable routine and pass-
ing id as an index into the hashtable. The Ai-=ooxpo•a, hange call then makes the
updates to the local description of the shared data. i ents and whatever changes were
made by the dialogue.

The last call within the loop gets the next changed element from th transaction. The loop
repeats until a nmuliid is returned.

Slop 3: Purge transctlon. After the loop ends the transaction can be purged safely. It is
you. responsibility to ensure that transactions a purgedsince this call releases resources
that otherwise could run out.

3.2. Recording Shared Database Transactions
There are two major tasks that need to be performed when using the record/playback -
ture of Serpent for testing the applicatlon or user interface:

1. Recording shared database transactions.
2. Testing the application or user Interface.

Since the steps involved in the second task can be performed independently of the implE-

14 CMUJSEIt-9-UG-6

mentation language they are described later in the Application and Dialogue Testing part of
this guide.

Btore testing the application or the dialogue however, you must first record the transactions
you would like to use In testing. Figure 3-5 illustrates the basic operations for recording
transactions.

tzansaatioa type trnsaotion;

Start zecodi..

staxrt z= rdinq("xeoozdi g", "test data: 5.7.3");

Send test data.

transaction starttra.saction ;

comit-tzanseotion (tzmnsactiou);

tansaction -start tranuactiooC;

cait t zansaction (tsenaotion);

tsnsacticn -start tzasmmton 0;

cnmnit transaction (traimaotion);

* Stop reoording.

stop.Fecording 0;

Figure 3-5: Recording transactions

Task Steps
There are three distinct coding steps Involved in recording shared database tranactons:

* 1. Start recording.
2. Send transactions.
3. Stop recording.

* MtUSEI-89-UG-4 15

Step 1: Sart recording. The first step is to begin recording by calling the
sta=t_ .ordizqroutine specifying both the name of the file in which to save the record-
ing and a message to help identify the file.

8p p2: Send transwal After the call is made you may start sending transactions
across the interface. You may send any number of transactions containing any type or
amount of data.

stop 3: Stop reo.dhf g. Once stat .Fecozdin has been called, all transactions and
associa 1ta wMit be saved out to#*he specified file until the s'op...acodig routine is
invoked.

3.2.1. Checking Status
Each routine in Serpet sets status on exit. It is good software engineering practice to
check this status after every calto make sure that the routine has executed correctly, and
provide appropriate recovery actio rs if it has not. Figure 3-6 shows the operations that Ser-
pent provides for examining the status.'

txansaction - start za sacti on
if (get sMtatus 0.1 4'

print stts(gdurInq start transaction");
zetu;;

Fig ure.3-6. Operations for exanuirig the status

The first of these status calls lIethe tatus, wi:chreturns an enumeration of status
codes. Valid status that each routine in. Serpent may return are defined in the reference
sections of this developer's guide. Success.eimiAion (or "OK") is always set to zero;
hence, it is possible to make the simple boolsan comparison shown in:Figure 3-6 for bad
status.

The print status routine prints out a user-defined error message and the current status.

16 CMU/SEI-89-UG-6

3.3. Serpent C Language Interface

3.3.1 Types and Constants
This subsection contains.:the type and constant definitions that are used in the C language
interface to the Serpemntsystem. The following is a list and short description of each of these
types and constants. A more complete description immediately follows:

Type/Constant Dcwriptlon
buffer used to define the structure of a shared data buffer

-heeg. yp.- defines the typeof modification made for an element

id y.e used to uniquely. identify shared data elements
6 nufl. id defines the null value for the idtype

sezPwit dwta1 tyPes
an enumeration of defined Serpent data types

txsnsaftion type
" used to define transaction handles

undefined values
Constants corresponding to undefined values for all supported types

*CLMEI89-UG-6 17

TYPE

buffer

D&OXMPTKot4 The buffer type is used to define the structure of a buffer wfithin
shared data.

DEFINmION typedef struct
int. length;
add t body;
bufs

COMPONENTS lngth Length of the buffer in bytes.

body. Address of th* actiual buffer data.

18 CMU/SEI-89.IJG-

TYPE

change_ pe

DESCRIPTON The changejype defines the type of modification made for an element.

DEFINITION typedef enum change _type(
no c*hange --
Cxeate -0,
modify. 1,

~v. -2,

* get w 3

COMPONENTS nochange Not changed or Invalid change.

Remove existin shared data instance.
c=eata Newly created shared data instance.
nodify Mod.ified exisfg shared data instance.

removeRemnove "xsting shared data instance.

got Got value for existing shared data instance.

0

40

* ~~cMUSEI-W9UG-6 1

TYPE

id:jWpe

DESCRIPTMIot The id type is used to uniquely identify shared data elements.

DEFNITION typdaf privat. idtyp;

20 CMUISEI-89-UG-6

CONSTANT

null~d

DESCRIPTMO The null-id constant defines the null value for the id_type. This con-
stant can be used to test for null id values.

DEFINITION #define nullid, (Iid id typ) -2.

CMU/SEI-8-UG-6 21

TYPE

serpent_data~types

DESM~PTION The serpent dlatat types type is an enumeration of the defined Serpent
data types.

DEFINMON typedef enm datatype
.shzpountlnudatoatye =-I,

sezpmft oolan. -0,
mazpout intage -1,
mozpeit _zeal =n2,
sezpntstziag. w3,

s~zp~Fzeord -n4,

seivp=-tuzndefized -7
ooszpent _data types;

22 CMU/SEI-89-IJG-

TYPE

transaction-type

DESCRION Variables of transactionjtype are used to define transactions.

DEFINMON typedef privt. transaction type;

CM/E0U-

CONSTANTS

*undefined values

DESCRIPTmO The following constants correspond to undefined values for all types
supported by Serpent. These constants can be used to test for
ndefined shared data components. When checking for an undefined
record value I s best to check the buffer length failed for
MNNINE Zurr= LWGTS.

DEFINITON #det .n. M Z N DOOLZAN (booleanu) OxAAAA
#define "It 11111) 1 ER (jut) OxAAAAAAAL
#define FXU REL (double) 0zAhAhhAA
#detino MUMM'ZE78_TRnG (string) OLAAAAAO
#deflnt MWZFInMD R3CD (caddzt) OxAA M
d.&no: UNDXFIM7D (:Lid idt)z~Ah&

#define UNDEFINEDBUFW _-ZUO! (int) -1
#daf i U=DEFI31_w,' *myo jaddz _t) O=AAAAAAA&

24 CU/SEI-89-UG-6

3.3.2. Routines
This subsection describes the routines that make up the C language interface to Serpent.
These routines fail into the following categories:

Inifialization/cIeanup

serpent in t
*serpent cleanup

P ransaction processing

*start-transaction
* commit transaction
*rollback transaction

* getjransacion
*getjransaclon_no-wait

*.purge transation

Sending and retrieving data

* add shared.data

0~ puts.hared_data
remove-shared.data

* get-first chang&e eement
a getjnextchangedelement
* get.shareddata
* incorporate_changes
* createchangedcompone8rt fiIt
* destroy changed compnent iUst
o get.changetype
a getelement-name
- get.shareddatajtype

" Record/playback

0 start-recording

* stop__ecording

" Checking Status

* * getstatus
Sprnt_status

SCMUISEI-9-UG-6 25

FUNCTION

addshareddata

DESCRIPTI4" sh d hared daa routine creates an instances for the specified
shared data ,eIe6Qt and returns a unique ID. The shared data in-
stanced nay or may not be Initialized.

SYNTAX ick type Add shared data(7* tanaotion :ini transaction type *
/* elsinnt unm -. in string *1
1* com9net_ In string *
/* data 1& ia caddt *

PARAMETERS
tansaction
The transaction for which this operation is defined.

alsmmnt nas The name of the shared data elemnyt
c m wet nar The name of a specific component to be initialized wftthe data or null If

the data corresponds to fthe entire element.
data data or null pointer if non-nltialized.

RETURNS
The ID of the newly created shared data instance.

STATUS
ok, out of nuzle, urtnm, oYeirflov)

26 CMLk/SE1-89-IJG-

ROUTINE

commit transaction

DEscRIPTON The coa.t transaction procedure is used to commit a transaction
*! :to the shareddatabase.

SYNTAX vold comittcranact.on (
1* tansa tion&: in transactionty *

PARAMETERS tzansaotion Existing transaction ID.

STATUS ok, out of .iuina, alidtransaction handle

CMUJ/SlEI-a-UG-4 27

FUNCTION

create changedcomponentlist

DESmPTI The =*tohang.componnt uit function accepts an in-
stance id as ameter and creates a list of changed component
names.

SYNTAX LMIS czefto changed ouhzonent hst (
/* id: im id type *

PARAMETERS Id Existing data instance id

RETURNS The list of cha:ged component names associated with a data instance,
or NuLL It nionS.

STATUS ok, !uv&Ud4i4, out of may, elinmzt fta ecord

28 CMU/SEI-89-UG-6

PROCEDURE

destroy-changedcomponent116t

DEBGRIPTIOm The destxoy changed component list procedUre releases
storage associated wfith a changed component list.

SYNTAX void dextzoy changed cmponent list (
1* changed component isxt In out LIST *

PARAMETERS changad component ii at
Litto be destroyed.

STATUS ok

CMU/s--U046 2

FUNCTION

getchangetype

DES CPTiN ThO get,-Chanet-ype function accepts an instance id as a parameter
and returns #wassociated change type.

SYNTAX ebhan g.tye get,_dhange_tYpe(
/. s : in idtype

PARAMETERS Id Exdsting shared data ID

RETURNS Element name associated with the sharid data instance ID.

STATUS ok, Lnv-aU change typ.. imwlid t=ansaction.handle,
iLnval.id id

30 CMUISEI-8-UG4-

FUNCTION

geLelement name

DES. vrPiO- The got el nt.nam function accepts an instance id as a
parameteri nd retums the associated element name.

SYNTAX strziql get -*enaut name (
,1 : i Id ty"p */

PARAMETERS idt Existing shared data ID.

RETURNS Element name associated with the shared data instance ID

STATUS ok, inva lid i

CIUEiW UG-6 31

FUNCTION

getjfirstchanged-element

DESCRIPTION The get-izxat haaqod iment function is used to get the id of
the first changed lsment on a trnsaction list.

SYNTAX i4. type .t £i- : : haned.mnt (
.* t..zsaction typ* in transaction

PARAMETERS tanaction Existing transaction ID

RETURNS The handle of the first changed element

STATUS ok, invalid tanacti.on 1ndle, out of anz

32 CMU/SSI-1"tG-6

FUNCTION

get next changed-element

DESCIPTION The get next _changedlement function is used to get the id of the
next changed element on a transaction list or return null iLd if the
transaction Rst is empty.

SYNTAX idjtype get _nezt changed kelement(
/* tranaaction type :in tansact.on *

PARAMETERS tawsaftien Existing transaction ID

RETURNS The handle of the next changed element

STATUS ok, invalid txasacti.on handle, outo_ * =oy

* CMU/SE34-89UG-6 33

FUNCTION

get shared data

DES" IPTIO The qt sh"4" data function allocates process memory, copies
shared data into process memory and returns a pointer to the data.

Warn: Record components may not have been specified and, therefore, would
not contain valid data.

SYNTAX caddz t got suhazed data(
.* t.ans.tion :..: transaction typeo
/* id :in id yp
/* componntnam in sting

PARAMETERS transacti3on Transalctiom n mwhlich to find the shared data id.
id Exdslng shared data id.
component-came Nams of component for which to retrieve data, or

entie lemet if NULL.

RETURNS A pointer to changed data

STATUS ok, nva.dLid, outof _.ry inomplete record

34 CMU/SE-8-UG0

FUNCTION

get shared datatype

DESCRIPT.I The get shazed.data type function is used to get the type associ-
ated with a shared data element.

SYNTAX apent data types get shared data type (
1* 0.e6mint name: in string */
/* cop=onent un : in string *

PARAMETERS ent name The name of the shared data element
omponent name The name ofthe shared data component, or NULL

RETURNS The type of the shared data element or record component.

STATUS ok, null elentn..

CMU/SE)-89-UG-6 35

FUNCTION

getstatus

DEsciPnON: The get-status function returns the current system status.

SYNTAX Io, status get status (;

PARAMETERS None.

RETURNS The.crrntM status.

STATUS None

36 CMU/SEI-89-UG-6

FUNCTION

get transaction

DESCRIPTION The .. t..auaction function is used to synchronously retrieve the
id for the next -completed transaction.

SYNTAX tvmxactioxntyp& qet tanxaction);

*PARAMETERS None.

RETURNS The transaction ID for a completed transaction

STATUS oek, symtiapevationf failed

4 0CM U/SE[89-UG-6

3

FUNCTION

getjransaction-no~wait

DwscwIvr.oI The qet _tx-.uat:iLan function Is used to asynchronously retrieve the
id for the next'comipleted transaction.

SYNTAX t~sauation type gat, thansaction no wait 0;

PARAMETERS None.

RETURNS The transaction ID for a completed. transaction

STATUS ok, systaiopeamtion faile4, not avai-lable

38 CMU/SEI.89-UG-6

PROCEDURE

Incorporate changes

DESCRIPTION .The iznoep=&t@.chanqes procedure is used to incorporate
changes Into local process memory without destroying unchanged infor-
mation.

SYNTAX void imcorporato otiege. (
/* id in id type ;/

PARAMETERS idExsting shared data ID
* data Pointer to data with which to incorporate changes.

STATUS ok, invalid

0

*C~u/S E-4-UG-6 39

PROCEDURE

print status

DE~RIP~oN The print status procedure prints out a user defined error message
and the currnt status..

SYNTAX void pr.ztutatus(
1* errcormqg in string *

PARAMETERS User-defined error message.

STATUS None

40 CMU/SE14"-tG-6

PROCEDURE

purge.transaction

DESCRIPTION The purge tmnsactlon procedure is used to purge a received transaction
once the conternts of the transaction have been examined and acted
upon.

SYNTAX Void puze-."za"n.a.tion (
1* transaction : in transaction-type

PARAMETERS tceauaat in pExisting transaction ID.

STATUIS ok, iaval. id, illegal yoive.

*CMU/SE140-UG-6 41

ROUTINE

put shared data

DESM" -n:TIOh put_ shaed data call is used to put information Into shared data.

SYNTAX vai4 put_. x ed data (
... tunsactio .n transaction type'/

* i: i :. in id typ *1
/* elmt-nin : in tzinq *
/* cc @oeats : in string i1
/* data:i zad 4t *

PARAMETERS transaction The tarlsaction to which the shared data should be
put

id Shared data ID.~
lament n.am. The name of the shared data element

ompo ntnme The name of the shared data component.
data Shared data.

STATUS ok, undef ined shaed data_ type, nu Il mu=t A=m,
invalid id

42 CMU/SEJ-OW-U-

PROCEDURE

remove shared data

DESCRIPTION The :reovahazb~d data procedure is used to remove a specified
shared data instance frm the shared database.

SYNTAX void remoe sbared data (
1* transaction in transaction type *
1* •slaust urns in sting *
/* IA in Idtp.*

PARAMETERS tzxsnsaction Transaction from which to remove the shared data
element

.... at -name Name- of dakuent to be removed.

id Exist ng shared data ID.

*STATUS ok, out of znull element nus, invalid Id

CMu/SEI-Wt#-uG 43

PROCEDURE

rollback-transaction

DESmpcRPIN Thozolback transaction procedure Is used to abort a given
~transaction and Udelet the associated transaction buffer.

SYNTAX void4 rolback-tanation (
/t transaction :iz transaction type *

PARAMETERS tzansaction. Existing transaction ID.

RETURNS A handle to a newly-created element,

STATUS ok, invalid transaction bandle

44 CMU/SEI-89-UG-6

PROCEDURE.

serpent ni t

DESCRIPTON 1he sezp~ntja.nt procedure performs necessary initialization of the
interface layer.

SYNTAX ,oi s:zp:nt:in:t
,,SLlboz : in string
:* lle : i. tig

PARAMETERS Uilibox MAIL_-BOX constant defined in SADDLE generated
include fie.

il1- file ILLFILE constant defined in SADDLE generated
: .= = .:-:-f.......

STATUS ok, Otof y null ma-ibox u r
null -ill-filen a.te proteenoper atinfailed

Cuu/SE14--60

PROCEDURE

serpent cleanup

DESCMiPTON -h *ep t la p procedure performs necessary cleanup of the
frierface layer.

SYNTAX void xazpent _cleauup ~

PARAMETERS None

STATUS ok

46 CMU/SEI-89-UG-6

PROCED URE

Start recording

DESORPTION The start zecarding procedure enables recording. Once
sar~t z*=zding has been called, all transactions and associated
data wW be saved out to the specified file until the sto .pcordinq
procedure is Invoked.

SYNTAX Void staft re.odIng(
1* fi1lw ae: In string *
/* msasage in-s tring *

PARAMETERS 9i snam File to which to write recording.

inusaq.Recording description.

STATUS ok, io £ailizze, *Ieayrcording

CMU/SEJ41-- 47

FUNCTION

start~ltransaction

DSCRPTION The staft t-xactiLon function is used to define the start of a
series of shared data modifications.

SYNTAX t=Aaaaaon type ftact tranaaction o;

PARAMETERS None.

RETURNS A urIkqu transaction id

STATUS ok, out of mwom , ovf low

48 CMU/SE11-89-UG4

PROCEDURE

stoprecording

DESCRIPTION The xtop z =ord.img procedure causes the current recording to be
stopped.

SYNTAX void stop..ecozdlng ;

* PARAMETERS None.

STATUS ok, io._ailu=e, invsl. p ocess.record

CMU/SEi-89-UG-6 49

50 CMU/SEI-89-IJG4

4. Ada Language Application Development

This part Includes two sections:

* How to Develop an Application in Ada: A step by step specification of the tasks
involved in developing a Serpent application in the Ada programming language.

* Serpent Ada Langua e Interface Reference: A detailed description of the
types, constants and routines available for developing Serpent applications In
the Adap rogiamming language.

4.1. How to Develop an Application in Ada
10 The main tasks for developing an application for Serpent require that you define the shared

data, add information to:shared data, and retrieve information from shared data. There are
also two add itional tasks which may applied: recording and checking status. Each of these
tasks is described in the subsections that follow.

4.1.1. Task 1: Defining the Shared Data
Defining shared data involves.two steps:

1. Create the shareddata definition file.
2. Run the created file through the SADDLE processor.

The following is a brief deciption of each of these tw steps. The SEI Serpent SADDLE
User's Guide contains a more-complete description of both these steps.

Step 1: Create the shared data definion ie The shared data definition file defines the
type and structure of application information that may be maintained by the Serpent shared
database. The shared data definition Is defined in an external ASCII file in SADDLE.

Figure 4-1 is a example of a shared data definition file for te snsor sitestatus application.
The content of the shared data definition file is independent of;the implementation language
used.

The file shown in Figure 4-1 contains definitions-for the data shared between the application
and the dialogue for the sensor site status application. The three:records define the type
and structure of the sensor, correlation center, and communication line application objects.
Note that these records only contain information to define the actual objects; they do not
specify how the information is presented to the end user.

Step 2: Run the created file through the SADDLE processor. Once the shared data has
been defined, you can run the file through the SADDLE processor to gen an Ada pack-
age specification containing Ada type specifications corresponding t the defined shared
data structures. This package may then be withed" in your Ada application in order to
declare local variables of the shared data types. This allows you to directly manipulate

CMUISEI-89-UG-6 51

sensor alte status :shazed data

sesor:= eod
site abbr: stxing[3];
statUs inteqeV;
site: strzn[5OJ;

las mesage-. string[SJ;

etro :stxi#CSI "
end record,-

uams::string[3j;.
status: integer;

end record;

conomicationUn. :record
from sensor:iLd of sensor,
to co;:.i:d of correlation center;
etrxo:string[8j;
status : nteger;

end record;

end shared data;
Figure 4-1: A shared data definitlonifle

shared data structures in Ada. The Ada package specification generated by running the
shared data definition file shown In Figure 4-1 through the.SADDLE processor is illustrated
in Figure 4-2.

In Figure 4-2, the first two lines in the file pnfvido visibility to various serpent types that are
used within the package specification. This is followed by the start of the
sensor-site-status package specification. Immediately defined withn the package
specification are two well-known constants:- ILD ox and rLLxI. These constants
are used in Task 2 to initialize Serpent. The three. record definitions correspond to the
records defined within the shared data definition file.

4.1.2. Task 2: Adding Information to the Shared Database.
Once you have defined the application shared data, you can begin to develop the appli-
cation. The code segment from the sensor site status application in Figure 4-3 illustrates
the basic operations for adding information to the shared database.

Preliminary Task Steps
In preparation for the task of adding information, you need to complete two preliminary
steps:

1. With required packaged specifications.
2. Define local variables.

52 CMU/SEI-89-UG-6

with serpent ty. definitions;
Us' serpenttype def i ni tions;

package sensor-site-status is

MAIL BOX: constant string :in"SSS BOX";

ILL rILE; co ,nstant string :-SS . UiV;

* type sensor add is record

status-. integer;
site: String (1-.51);
last message: string(1..9);
rfo:atig..5)
etro: stWring (I. .9);

end record;

type correlatiLon center add is record
name: arg(1. .4);

*status: integer;
end record;

type ccomm--ation linesadd is record
from_ record: id type; -- ID of sensor
to cc: id type; -- XD of correlation-center

*etro: string (I .. .9) ;
status: integer;

end record;

end sensor-site status;

FIgure 4-2: Ad~a language header fMe.

Step P1: WMth required par iraged spec~fiatlons The first step is to*With" the serpent
package specification and the sensor_site statu pacage specification generated by the

* SADDLE processor. The serpent package specification contains the specification rof the
data types and calls that you will need to interface with Serpent The sensor site-status
package specification contains the shared data types necessary to define local instances of
the shared data elements.

Stop P2: Define local variables. The next preliminary step is to define the required local
variables. The first variable defined is transaction, which is of transaction type. This
variable maintains the handle for a created transaction. The next variables to be defined are
omc and oft, both of which are of type correlation center. These variables store
local instances of the data that is going to be shared across the interface with the Serpent
system. The type definition for the correlation center structure was automatically
generated by the SADDLE processor during step 2 of Task 1.

CMU/SE[419-UG-6 53

with serpent;
use sexpent.;

idth sensor sits status;
use Sensor-;itw status;

procedure -- i is.

oft nuns: constant string : - "an I?;

gzen-statuws: constant integer :M- 0;

rellow.1status: Constant integer := - ;
re ta~tus: constant -integer :-2;

transact ion. transaction type;
=icid, oft id.:d dtype;

coft. correlation center;

begin

serpent _.nit (mawl box., fi_::le);

azc.nm(1.M .mlength) :- MC nuns;
CM. status : - green status;

oft nuns (1..oft nuns 'length) :M oft name

oft. status :- green status;

transaction: -start transaction;

oft id :- add shared dat&(

"correlation center".

oft' add ess

=c id : - add shared data (
transaction,
"correlation center",

=c' addrass

Coinait transaction (transaction);

serpent cqleanup;

return;

end miain;

Figure 4-3:' Basic calls for adding information to the shared database

The two vaiables that follow, cmi:d and oft iLd, store the ids of the shared data in-
54 CMUISEI-89-UG-6

stances created In shared data. It is necessary for the application to maintain this infor-
mation, since it Ls the only way to correlate end-user updates with local application infor-
mation when multiple instances of a single shared data element are used.

Main Task Steps
The main task of adding information to the shared database involves five distinct coding
steps:

1. Initialize Serpent.
t Start a transaction.
3. Add shared data to the Interface.
4. Commit the transaction.
5. Clean up..

Step 1: watz Serpent Once the appropriate variables have been declared it is possible
to begin describing the logic. The first step is to initialize the Serpent system using the
xewpentn nit call and passing the ma=.sox and =Lzz constants generated by the
SADDLE processor during:step 2 oftask 1.

Step 2: Start a tranfacmion. Before information can be added to the shared database it is
necessary to start a transaction. All additions or modifications to the shared database must
be performed as part of a transaction.

Stop 3: Add informatln to the shaed dabas. Once a transaction has been started,
you can begin to add information to the shared database as part of this transaction.

Stop 4: Comm# the transction. The actual change to shared data does not occur until
the transaction is committed. Up to this point it Is also possible to roNl back the transaction
so that none of the changes to shared data occur.

Step 5: Clean up. The se.ent_.clea=up routine must be invoked before exiting the
application. It is important that you complete this step, to release all allocated system
resources.

4.1.3. Task 3: Retrieving Information from the Shared Database
Once application data exists in the shared database it may be presented to the end-user
using one or more of the available technologies. The end-user may in turn make modifica-
tions to this data. These modifications are sent back to the application to be updated In the
application's local database. It is therefore necessary for the application to retrieve infor-
mation back from the shared database.

The Serpent interface provides both synchronous and asynchronous calls for getting infor-
mation back from the shared database. The following code segment from the sensor site
status application in Figure 4-4 illustrates the basic calls required to synchronously retrieve
data from the interface.

CMU/SEI-g-UG-6 55

procedure get user updates is

-- Constants.

oft name: constant string : - -OT-;
g.een status. constant integer - 0;
yellow status: constant integer -1;
zed statu.: constant integer :- 2;

•-- :taned data.

tr nsaction: t.ansaction type;

id: idt pe";

shared data*leat: hash-elament ;

begin

-R- 3atrieve infro tion 9- shared database.

transaction :-.ft gettansact:ion;

id :- get first chaned_element (transaction);

while id / nullid loop

shared data element :w- getfrom hashtable (id table, ,id);
incorporate changes (

transaction,
id,
shared data element' address

iLd -get,_nestchanged el*mnt (transaction)

end loop;

purge transaction (transactiLon);

return;

end get user updates;

Figure 4-4: Basic calls required to retrieve data synchronously

6CMU/SEI-89-UG-6

Task Step.
The task of retrfing information from the shared database involves three distinct coding
stps:

I. Get a transacton.
2. Update local database.
3. Purge transacliomo

Step 1: Get a bnacton. The first step in retrieving information from the shared data
base is to got a tnsaction. The ge.t='ansact:ion routine waits until a transaction is
avalable and then returrm a handle for this transaction. To poll for a new transaction
asynchronously, it ispossible to caIl the get tranaaction no wait routine, which will
return not avaia.bl If no transaction Is available.

Step 2: Upudaftloca database. Transactions can be thought of logically as a list of
changed elements. The next call, et _fist...ehanged element, returns the id of the
first changed element on the lisL. This: Id an then be used to access several types of infor-
mation about the shared data element

The application must.maintain a correlation between the shared data ids and the actual data
items to incorporate changes successfully into its existing local data. For the purposes of
this example, it is assumed that this database is.mintaned.as a hashtable indexed by the
shared data element Id. The purpose of the whileloop then is to incorporate all of the
changes into this local databaw or hashtabte. A pointer to the shared data element to be
updated is retrieved from the hashtablevusing the got ftm hashtable routine and pass-
ing id as an index into the hashtable. The iacorpate_ange. call then makes the
updates to the local description of the shared data elements and whatever changes were
made by the dialogue.

The last call within the loop gets the next changed element from the transaction. The loop
repeats until a nul i:d is returned.

Step 3: Purge transaction. After the loop ends the transaction can be purged safely. It is
your responsibility to ensure that transactions are purged, since this call releases resources
that otherwise could run out.

4.2. Recording Shared Database Transactions

There are two major tasks that need to be performed when using the record/playback fea-
ture of Serpent for testing the application or user interface:

1. Recording shared database transactions.

2. Testing the application or user interface.

Since the steps involved in the second task can be performed independent of the implemen-

CMU/SEI-1-UG-6 57

tation languagethey are described later in the Application and Dialogue Testing part of this
guide.

Before testing the application or the dialogue however, you must first record the transactions
YOU *oId like to use i testing. Figure 4-5 illustrates the basic operations for recording
transactions.

tranisaction: tinato type;

-- start recordinag.

start zecozdlingqlzeaoding" "test data: 5.7.3");

-- Send tst data.

tansaction s tart ttatsacti.on;

cinmit txanssctIon (transaction);

transaction at -sart: txmussztIon;:

comit transaction (transaction)

transaction :-start transact~

comiat transaction (transaction);

-- Stop recording.

stop recoxiding;

end main;

Figure 4-5: Recording transactions

58 CMUISEI89-UG-

0

Task Steps
There are three distinct coding steps involved in recording shared database transactions:

1. Start recordnig.
2. Send transactions
3. Stop recording-

*.Stop 1: Start roco ding. The first step is to begin recording by calling the
atatrt .codinu routine specifying both the name of the file in which to save the record-
ing and a to help identf 'the file.

Step 2: Send transactions After the call is made you may start sending transactions
across the interface. You may send any number of transactions containing any type or
amount of data.... .

Stp 3: Stop recording. Once start r:acording has been called, all transactions and
associated data will be saved outto the specified file until the stop yecording routine is
invoked.

4.2.1. Checking Status
Each routine in Serpent sets status on exit. It is good software engineering practice to
check this status after every call to make sure that the rot ine has executed correctly, and
provide appropriate recovery actions If it has not. Figure 4-& shows the operations that Ser-
pent provides for examining ft status.

transaction :- ct s t&ntin"actionl
i get-status /w ok thew
print status ("bad status fromn start transactioni");
retu-z;

end i;

Flgure 4-6: Operations for examining the status

The first of these status calls is the geq*statu, which returms an enumeration of status
codes. Valid status that each routine in Serpent may return are defined In. the reference
sections of this developer's guide.

The p,nt _status routine prints out a user-defined error message and the current status.

CMU/SEI-M9-UG-6 59

4.3. Serpent Ada Language Interface

4.3.1. Typeo and Constants
Tssubsection contains the type and constant definitions that are used in the Ada language
.iteface to the Serpent system. The following is a list and short description of each of these
types and constants. A rrmocomplete description immediately follows:

Type/Constant crlon

but w .used to define the:structure of a shared data buffer

chas type defines the "pof modification made for an element
id type used tunkuey !deniy shared data elements

nul 1id deftne6 tMe null value for the id type
sexpent_dats, types

an enumeratdon of defined Serpent data types

txansaction typ
used to define transaction handles

undefined values
Constanit corresponding to undefined values for all supported types

60 CMUS84G-6

TYPE

buffer

DEscRipTO The buffer type is used to define the structure of a buffer within
shared data.

0

DEFINmON type buffer is zcozd {
length intaer;
body : system. add ass;

end rea.d..

COMPONENTS length Length of the buffer in bytes.
body Addressof theactual buffer data.

SCMUISE14-69UG-6 61

TYPE

changejtype

DESCRPTInV The changejpe defines the type of modification made for an element.

DEFINMON type change ~type is (no-change, create, modify,
rinve, get);

COMPONENTS no,_hne o change.... or invalid change.
remove Remove existing shared data instance.
C..ots Newly created shared data instance.
modify Modified exist shared data instance.
remove Remoave existing shared data instance.

get Get value for existing. shared data instance.

62 CMU/SEI.-UG-8

TYPE

id type

D-ESCRiPTrION The id type is used to uniquely identify shared data elements.

DEFINMON type id type isv now int;

CMU/SEJ-89-UG-6 63

CONSTANT

null id

DESCJIPTloN The null id constant defines the null value for the id_type. This con-
stant can be used to test for null id values.

DEFINmON nul. Id constant type;

64 CMU/SEI-89-UG-6

TYPE

serpent-datajypes

DESCRIPTON The serpent data types type is an enumeration of the defined Serpent
data types.

DEFINMON type serpent datu types is(

sezpeat.ntaer~,
se.!pellteal,

serpent id,
serpent,_uffeor

CMU/SEI-89-UG-6 6

TYPE

transactiontype

DESCRIPION Variables of transaction-type are used to define transactions.

DEFINITION type tx:nsactio- 'typ. is private;

66 CMU/SEI-89-UG-6

CONSTANTS

undefined values

DESCRIPTION The following constants correspond to undefined values for all types
supported by Serpent. These constants can be used to test for
ndefinted shared data components. When checking for an undefined
record value it is best to check the buffer length failed for
ma1E~nZDBuJmLUGTB.

DEFINmiON, 1 ID.F:.Z-: constant integer;
,ZYlD.NTUA; : constant integer;

UUI WZ: REA : constant eal;
UUD3'ZD TRING :constant string;

IM MIU RECORtD :constant record;
DMMZU EDD : constant 14-y-Ype;

UDZFIM, D RU1= T LU i::ostant iteger;
MVDEZUEDM BUTU 300? onastant integer;

CMU/SEi-89-UG-6 67

4.3.2. Routlnes
This subsection describes the routines that make up the C language interface to Serpent.
T hese Ifmtnes: fall into the following categories:

" ldtization/cleanup

- serpent-init
* serpenL-clanup,

" Transaction processing

- startransaction
- commit transaction
* rollbackitransaction
* getjransacton
* ge~trsactionjiq wait
* purge__ransactiont

*Sending and retrieving data

" add-shared data
* put shared-data
* remove-shared data
* getjirst..hanged-element
" geLnexLchanged-elemin
" get...shared-data
" incorporate_changes
" create-changed..component~list
* detoycphangedcomponerit-fst
" getchangej--ype
* get.element-name
" get.sharedjdatajpe,

" Record/playback

* start_recording
" stopjecording

" Checking Status

" get-status
" prirnt-status

66 CMUISEI-89-UG-6

FUNCTION

add shared data

DESCRIPTION The add sh.ced data routine creates an instances for the specified
shared data element and returns a unique ID. The shared data in-
stanced may or may not be initialized.

SYNTAX £imction add shaz-d data (
tuan-action -in t'ansaction type;
lm._ntnaa, caponentna n Sting;

data -. i La .sem. address
)etu z id.type;

PARAMETERS
tzaneataion
The transaction for which this operation is defined.

element name The name of the shared data-element

o,nent._n=e The name of a specific coiponent to be initialized with the data or null if
the data correspondto the entire element.

data data or null pointer if non4ntialized.

RETURNS
The ID of the newly created shared data instw .

STATUS
ok, outof_ =emory, null elment nan, oveflow)

CMU./SE1-UG-6 69

Ro)UTINE

commit transaction

DEsc-R1pTmo ThO commit tuactiLon procedure is used to commit a transaction
to the shareddatabase.

SYNTAX proed=u comit txansactiLon(
tansaction :in tzansaction type

PARAMETERS txansect~on Existing transaction ID.

STATUS ok, out -of ainzwy, ix.aud txanzaction handle

70 CMU/8E149-UG-6

FUNCTION

createchanged-component-list

DESQRIT1ON. The Gea.te ch&aqe cponent.list function accepts an in-
stance id as a parameter and creates a list of changed component
names.

SYNTAX function czeate chnged component list (
id.. in id typo
retuzn =ST;

PARAMETERS Id Existing data instance id

RETURNS The ist of changed component names associated with a data instance,
or =. if none .

STATUS ok, invalld id, out-ofummy, elmnt not: • ecod

CMU/SEI-89-UG-6 71

PROCEDURE

destroycphanged-componentlist

DESCprIPwO Th* destroy- abAnged _coponent list procedure releases
storage associated with a changed component list.

SYNTAX pzvcadue destroy phangedocomponent -list (
changed ccuponent l-ist :in LIST

PARAMETERS changaed component lisrt
List to be destroyed.

STATUS ok

72 CMU/SEI-89-UG-6

FUNCTION

get changejtype

DESCRPTION The get _chanetype function accepts an instance id as a parameter
and returns the associated change type.

SYNTAX fu =ti on get-Chanetype (
id : in id type
zetuzz change type;

PARAMETERS id': Existing shared data ID

RETURNs Element na m e associ ed with the shared data instance ID.

STATUS ok, invalid hange : type, invalid t:an:action-handle,
iLnv*ld Id

CMWSE4-9UG-6 73

FUNCTION

get elementname

DEsCmPTImt The gt elemnt name function accepts an instance id as a
parameter and returns the associated element name.

SYNTAX fu~ctlon get_*eemnt name(
id : ia id type

I etuza wftizig;

PARAMIETERS id Existing shared data ID.

RETURNS Element name associated with the shared data instance I D

STATUS ok, invalid id

74 CMU/SEI-89-UG-

FUNCTION

getfirst changed-element

DESCRNPTON, The get .Ixzt _changed element function is used to get the id of
the first changed element on a transaction list.

SYNTAX funct-ion get firat changed _element
tzansactIon izi tzansactiLon type
rzeturn id type;

PARAMETERS tanSaction E~dsting transaction ID

RETURNS The handle of the ffrst changed element

STATUS ok, Invalid tranacatIoni handle, out-of =emory

CMU/SEI-89-UG-6 75-

FUNCTION

getjiext-changed-element

DEsc:RjpTmC Thl sret next,_chande~lemwt function is used to get the id of the
next changed element on a transaction list or return null iLd if the
transaction Ist is empty.

SYNTAX function qet neztt changed elment (
transaction : i trans action type
return Ld typ.:

PARAMETERS transactlon E~dsting transaction ID

RETURNS The handle of the next chianged element

STATUS ok, invalid transaction bandle, outof ory

76 CMU/SEI-89-(JG-6

FUNCTION

getshared data

DESCRIPTION The get. shaeddata function allocates process memory, copies
shared data into process memory and returns a pointer to the data.

Waming: Record components may not have been specified and, therefore, would
not contain valid data.

SYNTAX function got shard data (
transacton : uransaction type
1.d : in idtype
coaImment name : in string
retu=n system.addres*;

PARAMETERS transaction Transaction in which to find the shared data id.

id Existing shared: data id.
component-name N-ame of component for which to retrieve data, or

entire element if NULL.

RETURNS A pointer to changed data

STATUS ok, invalid id, out of memory, lucamplato record

CMU/SE-89-UG-6 77

FUNCTION

get-shared datajpe

DESCFPT1014 The qet _shaced data type function is used to get the type associ-
ated with a shared data element.

SYNTAX £w~tioa get_shrzd data type (
lement_pama, component -name I.n itrInq

) atux= serpent-data types;

PARAMETERS element namis The name of the shared data element.
comonet name The name of the shared data component, or NULL

RE1'JRNS The type of the shared data element or record component.

STATUS ok, nuli elmient-nm

78 CMU/SEI-89-UG-6

FUNCTION

get status,

DESCRIPTION The get sztatus function returns the current system status.

SYNTAX function get_ tatus return statuscodes;

PARAMETERS None.

RETURNS The current status.

STATUS None

CMU/SEI149-UG-6 79

FUNCTION

get ransaction

DESCRPTION The got txanaaction function is used to synchronously retrieve the
id::for the next completed transaction.

SYNTAX ftweti-on get transaction return transact ion-type;

PARAMETERS None.

RETURNS The tranmction ID for a completed tmnsaction

STATUS ok, systintopsa.iozf ailed

so CMU/SEI-89.UG-6

FUNCTION

get ransact!on-no-wait

DESCRIPTION The get tvzuaction function- is used to asynchronously retrieve the
id for the next completed transaction.

(BSYNTAX 14=fatiLon got tzansact ion no wait return
tranzact ion type,,-

PARAMETERS None.

RETURNS The transaction ID for a completed transaction

STATUS ok, systegaopozaton-fied, not available

CMU/SEW&I-60U48

PROCEDURE

incorporatechanges

DESCRPTmO The incopoat,@ chanqes procedure is used to incorporate
changes into local process memory without destroying unchanged infor-
mation.

SYNTAX PoC=*duz* incozpout& change. (
id -in. id type;
data :in sy.tm.add ass

PARAMETERS id Exsting shared datai ID

data Poiter to data with which to incorporate changes.

STATUS ok, invalid :id

82 CMU/SEI-89-UG-6

PROCEDURE

pnt status

DESCRIPTION The print -status procedure prints out a user defined error message
and the current status.

SYNTAX prcoedurs primt status (
.zozmsg i string

PARAMETERS usq==4 User-defined error message.

STATUS None

C~u/SEJ419-UG-6 83

PROCEDURE

purgetransaction

DES I~ON- .The purge transaction procedure is used to purge a received transaction
once the contents of the transaction have been examined and acted
upon.

SYNTAX]poceduwia purge._tansaction (
t"ransaction In transacton.type

PARAMETERS transaction Existing transaction ID.

STATUS ok, invualdid, iloqal r*oaeiver

84 CMU/SE-89-Ud4

ROUTffINE

put. shared-data

D IESCRIPTION The put ahaved data call is used to put informnation into shared data.

0SYNTAX procedure put shared data (
-transact ion :in trans action-type;
id :in id tye;
elasont name :.nstring;
CoponatSS :m in string;

* data : in system.addres

PARAMETERS txansaction The transaction to which the shared data should be
put.

id Shared data 10.
element-nae The name of the shared data element.
comyonent-nam The name of the shared data component.

*data Shared data.

STATUS ok, undef ed shared datva type., na Il elmnt name,
* invalid iLd

* C~U/SEJ4-UG-6 85

PROCEDURE

remove-shared-data

DESCRPTION The remve shared data procedure is used to remove a specified
.shared data instance, from the shared database.

SYNTAX procedure remov-h ad data (
transact ion a n:t=ansaction type;
element name in stxing;
id :iLa id type

PARAMETERS transaction Transaction from which to remove the shared data
element.

element am Name of element to be:-removed.
id Exdng shared data 10.

STATUS ok, out-of memory, nullae~mntnam, iavalid id

66 CMU/IEW4OdG-

PROCEDURE

rollback transaction

DESCRIPION The rollback transaction procedure is used to abort a given
transaction anddelete the associated transaction buffer.

SYNTAX pc .dure rollback transaction (
traasaction .: In transaction-typo

PARAMETERS transaction Existing transaction ID.

RETURNS A handle to a now y-created element

STATUS ok, inval.id trmnsacton handle

CI.MJ/S-89-UG-6 87

PROCEDURE

serpent i it.

DEs=RPTmO The xxpent izit procedure performs necessary initliozation of the
Interface layer.

SYNTAX procedure sezpntin=it (mailbox, ill -file In
string)

PARAMETERS milboz MAILBOX constant defined In SADDLE generated
include file.

ill1 fIe ILLFILE constant defined in SADDLE generated
include file.

STATUS ak, out of numorl mailbox-name,
null ill1 file am sysu patinfie

SB CMU/SEI-89-UG-6

PROCEDURE

serpent-cleanup

D ,ESCRIPTIN The serpent _ceanup procedure performs necessary cleanup of the
interface. layer.

SYNTAX proceduze serpent _cleanup;

PARAMETERS None.

STATUS *k

CMU/SEI-s0UG-6 80

PROCEDURE

startrecording

DESCRIPTMIO The st.-t =coading procedure enables recording. Once
-tat_. eozdUngq has been called, all transactions and associated
data will be saved out to the specified file until the ,top..ecord.ng
procedure is invoked.

SYNTAX rwoedu.e sta t teco-d.=ig (
txansactona :tzansactiontype;
ftle nm . in .stIng

PARAMETERS fil£: nme File to which to write recording.

,ssags Recording desciption.

STATUS ok, io-failure, already eao:ding

90 CMU/SEI-89-UG-6

FUNCTION

start-transaction

DESCRIPTION. The stzxt tranxaction function is used to define the start of a
series of shared-data modifications.

SYNTAX funct~ion start tnacton return tran ect ion-type;

*PARAMETERS None

RETURNS A unique transaction id

STATUS ok, out of pmno=y, Overfow

CMU/SEI.69UG-4 91

PROCEDURE

stop recording

DESCRIPTION Th0 top .cc~d~n procedure causes the current recording to be
stopped.

SYNTAX px mdue stop_ ~oozding;.

PARAMETERS None.

STATUS ok, izofwiluze, inmad pvacas ccozd

02CMU/EI-69-G

5. Application and Dialogue Testing

5.1 Playback/Record

T'here are two major tasks that need to be performed when using the record/playback fea-
ture of Serpent for testing the application or user interface:

1. Recording shared database transactions.
Z, Testi the application or user interface.

The steps involved in the specftation of the first task are dependent on the language in
which the application was developed; therefore a description of the steps involved in record-
ing shared database transactions is Included in both the C language and Ada language ap-
plication development parts:of this guide.

5.1.1. Teslng the Aplcation
Once you have made a record+rg It Is possible to use that recording to test either the appli-
cation or the dialogue. This Is, accomplished by using the recording to simulate the user
Interface (when testig the application) or the application (when testing the dialogue). In
order to test the Sensor Si Status application (sss),, for example, you would run the app-
test command provided with Serpent specifying both the application to be tested and the
name of the file containing the recordedtest data, as ithishrtd in Figure 5-1.

44 Opp-test assg o ig
Playing back jouzal- file: recoding
Message: regzession test data, S.7.3
Playback oc.ileted succesful y-.

Figure 5-I: Testing the Application

The app-test command will then simulate the dialogue manager. This technique allows the
application developer to test the application without the dialogue manager. The application
must be tested in the same directory as the recording was made.

5.1.2. Testlig the Dialogue
The same recording can also be used to test the user interface. In order to test the Sensor
Site Status dialogue (sss.dlg), for example, you would run the dialogue-test command pro-
vided with Serpent specifying both the name of the dialogue to be tested and the name of
the file containing the recorded test data, as Illustrated in Figure 5-2.

The din-test command will then simulate the application. This technique allows the dialogue
specifier to test the user interface without the actual application, It Is once again important
that the dialogue be tested in the same directory as the recording was made.

CLWU/S-8W-UG4 V3

% m-tt so..9 r ecording
Playing back Iijouzzal file: recording
Message.- rzmmeion test data, 5.7.3
Playback campleted successfully

Figure 5-2: Testing the User Interface

94 CMU/SEI-89-UG-6

5.1.3. Commands
This subsecton contains definitions of some commands provided with Serpent to assist in
testing Sepent appications and dialogues. The following is a list and short description of
each ofthese commands. A more complete description immediately follows:

Command Dewripton

app-teut used to test an existing application by simulating Serpent execution

dialogue-test used'to test an existing dialogue by simulating the application program.

CuuiEI.-u4 .95

COMMAND

app-test

DESMRITIC4 The, applicationtest, command can be used to test an existi ng applica-
tion by simulating Serpent execution. The application-test command re-
quires a recording of the application to be made prior to testing. The
app~atio must then be tested in the same directory as the recording
was made.

DEFIN MON ap-et plc t ilenm

PARAMETERS a'lision The name of the application being tested. The ap-
plication is assumned to be in the working directory.

£ilnm The nam of the ft containing the recording to be
playedback.

RETURNS 0 ok
1 app"atonnot found
2 plfyback fIle not found:
3 error during playback

96 CMLSE14WU-6

COMMAND

dialogue-test

DESCRIPTIO The dialogue-test command can be used to test an existing dialogue by
simulating the application program. The dialogue-test command re-
quires a recording of the application to be made prior to testing. The
dialogue must then be tested in the same directory as the recording was
made,

DEFINMON dialogu-test 4d.alogue filenme

PARAMETERS dALogUe The name of the dialogue being tested. The dia-
logue is assumed to be in the working directory.

fa~lnmaeThe name of the file containing the recording to be
played back.

RETuRNS 0 ok
1 dialogue nottfound
2 pt~iback file not.-found
3 error during: playback

CMu/SEI-M9uG-6 07

U CMUISEJ-8-UG-6

Appendix A: Glossary of Terms
0 application layer those components of a software system that implement the "core" appli-

cation functionality of the system.
dialogue a specification of the presentation of application information to, and in-

teractions with, the end-user.
S :- dialogue layer Serpent layer that controls the dialogue between the application and

the: end-user of the application.
dialogue manager Serpent component that executes the dialogue.
ID: unique shared data instance identifier.
I/0 technologies existing hardware/software systems that perform some level of general-

• Ized interaction with the user.
presentation layer Serpent layer concerned with low level interaction with the user. This

I layer con sists of the vatious I/0 technologies.
presentation. Independent:

Independentof the use r nterface of the system.
shared database Application and technology data maintained in Serpent
shared data definitkio

..a description of the type and structure of data that can be placed in the
shared database.

* shared date element
any shared data structure that may be instantiated at run-time.

shared data Instance
an Instance of a shared data element.

transaction a collection of updates to the shared database that is logically proc-
* essed at one time.

user Interface those components of a sof are system tha speciy the presentation of
application informafon to and interaction with, the end-user.

* ~CME14W9UG-6

100 CMU/SEJ-8-UG4

SECUReT CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ii REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2tLOECL.ASSiFICATIONIOOWNGRAOING SCHEoULE DISTRIBUTION UNLIMITED

N/A
4.pERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

CMU/SEI-89-UG-6 ESD-89-TR- 12

Ga NAME OF PERFORMING ORGANIZATION jb- OFFICE SYMBOL. 7a. NAME OF MONITORING ORGANIZATION
(Irapplicabiuj

SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6c. ADDRESS (CRY. Sinkf n.d Z1P Cbdel 7 " 7b. ADORESS (City. Stae .. d ZIP Code)

CARNEGIE-MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 152.13 HANSCOM AIR FORCE BASE

HANSCOM- MA Q1711
B. NAME OF FUNOING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATIOQ" UMSER

ORGANIZATION (it .p"lcbein

SEI JOINT PROGRAM OFFICE ESD/XRS1 F1962885C0003
Or ADRS (City. Slsf md ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNI
PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.

ii. TITLE (Incude 63752F N/A N/A N/A
SEI SERPENT APPLICATIN DEVELOPER'S GUIDE

12. PERSONAL AUTHORS)

13A. TYPE OF REPORT 13b. TIME COVERED 14. OATE OF REPORT (Yr.. Mo.. Di) 15. PAGE COUNT

WTAV T FROM. To_

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1. SUBJECT TERMS (Contin.e on wmtre if neernm end Ienty by block numbenr
FIELDo GROUP SUB. Gn. DIALOGUE SPECIFICATION, PROTOTYPING, SERPENT, USER

INTERFACE, USER INTERFACE MANAGEMENT SYSTEM

I. ABSTRACT (Continue on feve.,, IteICeW7 and kidliy by biock number,

THIS DOCUMENT DESCRIBES HOW TO DEVELOP APPLICATIONS USING SERPENT. SERPENT IS A USER

• INTERFACE MANAGEMENT SYSTEM (UIMS) BEING DEVELOPED AT THE SOFTWARE ENGINEERING INSTITUTE

(SEI). SERPENT SUPPORTS THE DEVELOPMENT AND IMPLEMENTATION OF THE USER INTERFACE FOR

A SYSTEM. IT. PROVIDES AN EDITOR TO SPECIFY THE USER INTERFACE AND A RUNTIME SYSTEM

THAT COMMUNICATES WITH THE APPLICATION TO DISPLAY DATA TO THE END USER.

2 . 04STRIBUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLANIPitrO/uWMTiO Jp SAME AS nr. 0 OTiC usm [i UNCLASSIFIED, UNLIMITED DISTRIBUTION
22 . NAME Oft RIESPIMSIGLE INOIVIOUAL 22b6 rELPHONE NUMBER 22c. OFFICE SYMBOL

KARL H. SHINGLER (includ Iv Codej

*R 1 A . O O412 268-7630 SEI JPO
00O FORM 14730 83 APR GoiIoN, OFI JAN 73 IS OSSOLETE.

SECURITY CLASSIFICATION OF THIS Pi

